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Abstract

Human observers are capable of interpreting hand drawn sketches as three- di-

mensional objects, despite inconsistencies in lengths, variability in angles, and uncon-

nected vertices. The current system is an attempt to achieve such robust performance

in the limited domain of sketches of wireframe rectangular polyhedra. The �rst ver-

sion of this system reconstructs three-dimensional objects from perfect drawings, in

which all angles and line junctions are consistent with projections of rectangular poly-

hedron. Ambiguities which are inherent in such drawings are avoided by choosing a

line grammar which yields only a single interpretation. Next, reconstruction from im-

perfect drawings, in which all the line segments were randomly perturbed, was then

achieved by grouping line endpoints into vertices while simultaneously restricting lines

to particular orientations, and recovering three-dimensional form from the corrected

line drawing. Finally, when actual hand-drawn sketches were used as input, we found

that to successfully perform reconstruction the constraints on line orientations had

to be replaced with constraints segment lengths and an additional three-dimensional

point clustering process was needed.

Original image, initial line recovery, and lines after 2D clustering

Two views of the recovered 3D lines, and the corresponding surfaces.

Figure 1: An example of the process through which the system described in this paper

reconstructs 3D shape from a hand-drawn sketch.





Introduction

Past systems which perform polyhedral reconstructions have been based on a

variety of methods which attempt to determine a globally consistent interpretation

of the scene. The extensive work which has successfully been done in this area can

be grouped into two major themes: systems which rely on line labeling techniques,

and systems which use gradient information to add additional constraints which are

not present in line drawings.

Hu�man and Clowes independently developed methods in which they labeled line

types and enumerated all physically possible types of vertices in a dictionary, and then

searched { initially simply depth-�rst and the eventually using more sophisticated

pruning methods { for con�gurations in which all of the vertices could be labeled

with entries from the dictionary (Hu�man, 1971; Clowes 1971). Such techniques are

capable of recovering scene geometry through the use large dictionaries and extensive

searches though the space of possible legal combinations, however:

\...the labeling scheme examined here still has problems: syntactically

nonsensical scenes [can be] coherently labeled; scenes [and be] given geo-

metrically impossible labels; and scenes that cannot arise from polyhedra

are easily labeled." (Ballard and Brown, 1982, p. 298).

Another method, developed by Mackworth (1973), used brightness to determine

surface gradients { in a fashion similar to the re
ectance map computations later used

by Horn (1977). The additional constraints were used to determine the equations of

the planes on which the vertices in the line drawing lie. However, surface brightness

information is not available in line drawings and yet human observers are capable of

perceiving the three-dimensional polyhedra represented by them. This leads us to

ask: what alternative methods could be used to solve this problem?

The observing system could assume a \grammatical" structure within the lines,

which could be used to unambiguously interpret each line as having some particular

three-dimensional orientation, independently of the global structure within the �gure.

Then, if the chosen grammar resulted in a physically impossible three-dimensional in-

terpretation another grammar would be chosen. The polyhedron could be determined
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by searching over grammar-space, which is relatively small and independent of the

scene, instead of over the potentially huge space of vertex classi�cations. One result

of this method is that some drawings would have multiple consistent interpretations,

each with a di�erent corresponding grammar { such as is perceived in the bi-stable

Necker cube illusion.

By assuming a simple grammar which just uses the line orientation to determine

the represented three-dimensional displacement, simple polyhedral scenes such as the

�replace mantel shown in Figure 15-2 of Robot Vision (Horn, 1986) can be interpreted

without determining a consistent labeling of each line.

In the case of the mantel drawing, the grammar which results in a reconstruction

which conforms to human perception is one which maps vertical (90-180 degree)

lines to y displacement, 150-330 degree diagonal lines to x displacement, and 30-

210 degree diagonals to z displacement. In fact, any mapping of these orientations to

an orthogonal triplet of vectors will result in rotated and scaled versions of the same

polyhedron. One could imagine constructing a system which makes an orientation

histogram of a drawing and maps the peak orientations to an arbitrary orthonormal

basis set.

In the current system we circumvent this step by assuming, and restricting the

input drawings to containing alignment around only a predetermined set of orienta-

tions. These peak orientations were chosen to be along the x axis, the y axis and

45-225 degrees and were mapped to the orthonormal three-space vectors along the

x,y and z axes. This mapping (mapping) is used by the present system to parse

wireframe sketches of rectangular polyhedral scenes.

Interpreting 3D Structure from Perfect Line Drawings

The simplest wireframe rectangular polyhedral scene consists of a single cube.

With the grammar described above in place, reconstructing the three-dimensional

structure can be accomplished by choosing a vertex to correspond to some arbitrary

point in three-space and then tracing along each line and labeling each new vertex with
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the three-dimensional location of the previous point plus the displacement indicated

by the length and orientation of the line between them. Clearly other reconstructions

would be possible if another grammar had been chosen.

In most cases the scene perceived by human observers tend to be consistent with

grammars which correspond lines in the the x and y directions, when present, with

three-dimensional lines at a single depths, and lines along one or multiple diagonals

traveling in depth; though this need not be the case: other grammatical rules result

in stable interpretations as well.

The simplicity of this reconstruction, however is dependent on all paths between

two points in the drawing resulting in the same interpreted three-dimensional dis-

placement. In the case of the simple grammar we have chosen { a mapping three

peak orientations to orthogonal three space vectors { only closed loops which consist

Original image, initial line recovery, and lines after 2D clustering

Two views of the recovered 3D lines, and the corresponding surfaces.

Figure 2: Reconstruction of the simplest wireframe rectangular polyhedral scene: a

cube.
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exclusively of lines of these orientations will be mapped to a closed loop in three

dimensions. Closed loops which contain lines of other (non-peak) orientations will

result in disconnected paths in three-dimensions, with the distance between the two

disconnected ends depending on how we choose to map other orientations into three-

space.

Yet when interpreting such drawings, human observers perceive lines of over a

range of orientations as mapping to the same direction in three-dimensions, regardless

of the fact that this yields a globally inconsistent object. For example consider the

haphazardly drawn cube in Figure 2, even though the there are actually lines of many

orientations { resulting in a drawing which could not be the orthographic projection

of a rectangular polyhedral object { observers tend to ignore the inconsistencies and

perceive a locally consistent rectangular object.

Original image, initial line recovery, and lines after 2D clustering

Two views of the recovered 3D lines, and the corresponding surfaces.

Figure 3: Reconstruction of a more complex wireframe sketch.
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The Addition of Noise to the Input Lines

Once the initial reconstruction system, which was only capable of reconstructing

wireframe drawings containing lines of three orientations was built, an additional

layer was added to enable it to parse line drawings in which the endpoints each line

line segment were perturbed by adding some random displacement. The e�ect of this

noise was not only to disconnect lines which had come together to form vertices, but

also to change the orientation of each line.

To �nd the intended vertices in the noisy line input, we take advantage of the

fact that every vertex of wireframe rectangular polyhedral consists of the junction

of the endpoints of three line segments. In this de�nition of vertex we exclude line

intersections which occur due to vertices de�ned by the intersection of lines. Though

intersection-de�ned vertices are not used to constrain the solution, they can be re-

covered through the recovery of each of its component lines. For an example of a

reconstruction of a �gure containing such an intersection-de�ned vertex see Figure 4.)

One approach to clustering the line endpoints into vertices would be to minimizing

the total squared displacement necessary to move each endpoint such that it coincides

with endpoint from two other lines. When there are no spurious or fragmented lines

and the added noise is not so great that line endings are closer to some other vertex

than their intended vertex, the global minimization solution results in each point

moving to the average of it and its two closest neighbors. However, in practice

spurious and fragmented lines result in a minimum displacement con�guration which

contains extra vertices and lines of orientations which are not intended in the drawing.

Furthermore in noisy drawings which a total number of lines which is not divisible

by 3, there is no such global solution.

This global minimization can be modi�ed, however, into a local iterative tech-

nique which does result acceptable vertex clustering. By assuming that locally these

fragmentless conditions exit we can cluster the endpoints by iteratively moving each

point to the average of it and its two closest neighbors. When three segment end-

ings cluster to form a vertex, they become stable and do not change with additional

iterations. Though it is possible that fragmented and spurious lines on of edges can
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cause problems by generating edges which are not intended, this does not occur often.

Fragmented and spurious lines tend to move toward duplicating some other line which

is in a stable con�guration. These excess lines are easily removed by eliminating lines

which are within some small displacement from another line.

This method successfully recovers vertices for drawings with noise of up to about

20 percent of the length of the shortest line segment { drawings which are di�cult to

interpret by human observers.

Results of this clustering operation on images acquired from actual hand-draw

sketches (discussed later) are shown in the third panel of each �gure.

Once the lines segment endpoints have been clustered, the resulting drawing con-

tains lines of many orientations which are distributed around three peak orientations.

To use the grammar technique to attempt to parse such drawings chosen one

Original image, initial line recovery, and lines after 2D clustering

Two views of the recovered 3D lines, and the corresponding surfaces.

Figure 4: Though it does not explicitly manipulate vertices de�ned by line intersec-

tions, the system can recover them.
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might consider using some method to project lines onto the three peak orientations.

Because in two space any set of three orientations must be linearly dependent, any

non-peak orientation can be projected to in�nitely many possible combinations of the

three peak orientations; therefore some rule must be used to decide which projection to

use. Once a projection rule is chosen, the three-dimensional displacement represented

by a line is the determined by the linear combination, indicated by its projection, of

the displacements associated with the peak orientations.

One could imaging using a projection rule which maps a particular orientation

to a linear combination of the two closest peak orientations, however, it is trivial to

generate an example of a closed loop drawing which under such a rule maps to an

open path.

Original image, initial line recovery, and lines after 2D clustering

Two views of the recovered 3D lines, and the corresponding surfaces.

Figure 5: A sketch reconstruction of a similar polyhedron in which the intersection-

de�ned vertex of Figure ref�g:Failhas been replaced with two end-de�ned vertices.
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Alternatively, one could imaging always projecting non-peak orientations onto the

same two peak orientations. This mapping rule will result in a consistent grammar

which can reconstruct a subset of generalized cylinders (Binford, 1971), in which

an arbitrary two-dimensional shape (in this case a shape without lines of the third

peak orientation) is swept along the direction in three space which is mapped to the

third peak orientation. However, reconstructions based on this grammar would be

extremely sensitive to slight perturbations of lines which are supposed to be of the

third peak orientation.

To compensate for the distributed orientations resulting from the vertex-clustered

drawings, an alternative method was implemented. By rotating each line to be ori-

ented along the closest peak orientation we are insured that any closed path in the

two-dimensional drawing will map to a closed path in three dimensions. The e�ect

Original image, initial line recovery, and lines after 2D clustering

Two views of the recovered 3D lines, and the corresponding surfaces.

Figure 6: A reconstruction of an object with surfaces at three levels in each dimension.
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of rotating each line is to re-break the connected lines which were acquired in the

clustering operation. However, the breaks which this introduces are smaller than the

original breaks in the perturbed drawing because, after the initial clustering opera-

tion, the line centers { which do not change when the line is rotated { are closer to

their intended locations.

To re-acquire endpoints which cluster to form vertices without changing the orien-

tation of the lines, the iterative clustering operation was repeated while constraining

the the motion of each line so that it retained the same orientation { at the expense

of allowing its length to vary.

For the ideal drawings which were randomly perturbed, this method is able to

successfully recover the topological structure of the intended three-dimensional image.

Because line lengths were allowed to vary in order to simultaneously retain connect-

edness and orientation, the relative distances recovered become less accurate with

increased perturbation. Eventually, as noise level increases, the recovered lengths

degenerate to zero, and three-dimensional recovery fails.

Interpreting Hand-Drawn Sketches

The next phase of the project was to apply this reconstruction technique to line

drawings acquired from hand-drawn sketches.

Hand-drawn wireframe sketches were acquired using a black and white CCD cam-

era attached to a Silicon Graphics Indy computer. Examples of the input images are

shown in the �rst panel of each �gure. Line segments in the captured images were

found with an algorithm which is equivalent to a multi-scale oriented �ltering. To re-

duce computational cost, only orientations near the peak orientations of the grammar

were found. Lines of with less than a speci�ed threshold length were discarded, and

fragmented lines were minimized by initially swelling the thresholded image before

performing the line search. The line segments found are shown in the second panel

of each �gure.

For carefully drawn sketches the system as currently described was able to re-
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construct the intended three-dimensional structure. However, when reconstructions

of more haphazard drawings were attempted the failure rate rose rapidly. This was

due to the fact that the deviation of the orientations of lines acquired from actual

hand-drawn sketches from the peak orientations tended to be systematic, as opposed

to uniformly distributed as they were in jittered ideal drawings. For example, a cube

is often sketched with one face slightly smaller than the face parallel to it, resulting in

every angle of the four adjacent faces deviating slightly. Because of this, the second

phase of orientation-constrained iterative endpoint clustering results in line segments

with lengths which frequently degenerate to zero. This sensitivity to these system-

atic orientation deviations is inherent in this clustering process, and as a result this

method was abandoned in favor of another, more robust technique.

Even though most hand-drawn wireframe sketches of rectangular polyhedral ob-

Original image, initial line recovery, and lines after 2D clustering

Two views of the recovered 3D lines, and the corresponding surfaces.

Figure 7: The �rst complex polyhedron devised by friends in the AI lab to challenge

the system.
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jects are globally inconsistent, they can be interpreted based on the locally consistent

information. This tolerance of a global inconsistency was achieved by relaxing the

constraint that the recovered polyhedron be truly rectangular.

This was done using three-dimensional version of the initial unconstrained clus-

tering method used in two dimensions. By beginning at a vertex and recursively

mapping each line as to a line in three space by interpreting it as if it actually were of

the peak orientation to which it is closest, we recover a partially connected set of lines

in three space. Even though the resulting set of lines is only partially connected, the

situation is far better than the fragmentation which the iterative clustering corrected

in two space for three reasons: each line segment is connected to at least one other

segment; adding an additional dimension increases the distance between disconnected

vertices; and all spurious and fractured lines have already been eliminated. Hence,

Original image, initial line recovery, and lines after 2D clustering

Two views of the recovered 3D lines, and the corresponding surfaces.

Figure 8: The reconstruction of a another polyhedron with the same \notched-cube"

theme as in Figure ref�g:CornerNotch.
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the iterative grouping operation in three-space is able to successfully regroup line

segment endpoints into vertices.

Though resulting polyhedral wireframe is not exactly rectangular (except in the

case of an ideal input drawing), line lengths are roughly proportional to the line

lengths indicated in the drawing. For example see Figures 9 and 6. Further, the

angles between lines which meet vertices does not deviate greatly from 90 degrees,

resulting in a wireframe which is locally consistent with a rectangular polyhedron.

Examples of these three-dimensional line reconstructions, from two points of view,

are shown in the fourth and �fth panel of each �gure.

Surfaces can be reconstructed from (perfect) rectangular polyhedra by iteratively

tracing all of the closed paths from some point lines orthogonal to one of the or-

thonormal basis vectors, until all the lines have been tested for membership in a

Original image, initial line recovery, and lines after 2D clustering

Two views of the recovered 3D lines, and the corresponding surfaces.

Figure 9: By relaxing angular constraint of insisting on orthogonality, the system is

able to maintain the relative distances indicated in the original sketch.
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surface orthogonal to each vector. Reconstructing surfaces from polyhedra which are

only approximately rectangular, was done by only enforcing that the angle between

each line in the closed path and a basis vector be less than 45 degrees.

Presumably in many applications of such a system, we want to assume that the

polyhedron depicted in the drawing is supposed to be rectangular. Therefore it is

useful to determine what the rectangular polyhedral shape would be if the sketch

had been drawn perfectly. The closest rectangular polyhedron can be easily found

by \snapping" the acquired approximately-rectangular polyhedron to a grid by quan-

tizing the line segment endpoints (assuming that the sketch only deviates by some

reasonable amount from a projection of a rectangular polyhedral shape).

Original image, initial line recovery, and lines after 2D clustering

Two views of the recovered 3D lines, and the corresponding surfaces.

Figure 10: Reconstruction of sketches consisting of haphazardly drawn \right" angles

is made possible by allowing the recovered 3D lines to deviate from a true rectangular

polyhedron.
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Multiple Polyhedra

Because wireframe objects cannot occlude one another, except cases in which lines

or vertices are accidentally aligned, there is no additional di�culty associated with

multiple polyhedra. Once all of the closed paths beginning from a point have been

mapped to three-space, all of the remaining lines which have not yet been mapped

belong to di�erent polyhedra. We simply recursively apply the same reconstruction

procedure until all lines have been used.

There is no way to determine the relative depth of multiple polyhedra from a

sketch, unless their spatial con�uration is made explict by intigrating them into a

single wireframe as in Figure 11. Therefore initial depth of the �rst point is arbi-

trarily chosen to be zero (though any value could be used); because of this a sketch

which contains two overlapping wireframes will result in recovered three-dimensional

polyhedra which occupy the same space { this can only be avoided by the application

of an arbitrary rule which simply displaces the two polyhedra in depth.

System Limitations and Recovery Failure

Though this system can successfully recover three-dimensional structure from

sketches, it requires human intervention to set parameters about the environment

and it is prone to certain problems which cause recovery to fail.

� Spurious lines are reduced by throwing out lines below a threshold length; de-

termining this threshold is a di�cult problem when nothing about the thickness

and density of the lines in the input sketch are known. Currently this threshold

is a system parameter.

� The gain control level used to determine which image pixels are part of lines is

also a system parameter.

� Though this system is quite robust to spurious and somewhat fractured lines,

the clustering operation will fail completely if there are any missing lines.
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� \The accidental alignment in which we happen to be viewing a vertex from a

direction that makes it line up with a more distant edge" (Horn, 1986) will

cause the recovery of only one line, which will result in failure of the clustering

operation.

Original image, initial line recovery, and lines after 2D clustering

Two views of the recovered 3D lines, and the corresponding surfaces.

Figure 11: Unless explicitly de�ned by attachment, as in the above example, the system

will simply reconstruct each polyhedron in the scene at the x and y positions indicated

in the drawing and at a depth of 0.
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