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Abstract

A new algorithm is presented which approximates the perceived
visual similarity between images. The images are initially trans-
formed into a feature space which captures visual structure, tex-
ture and color using a tree of filters. Similarity is the inverse of the
distance in this perceptual feature space. Using this algorithm we
have constructed an image database system which can perform
example based retrieval on large image databases. Using care-
fully constructed target sets, which limit variation to only a single
visual characteristic, retrieval rates are quantitatively compared to
those of standard methods.
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1 Introduction

Without supplementary information, there exists no way to directly measure the
similarity between the content of images. In general, one cannot answer a question
of the form: “is image A more like image B or image C?” without defining the crite-
ria by which this comparison is to be made. People perform such tasks by inferring
some criterion, based on their visual experience or by complex reasoning about the
situations depicted in the images. Humans are very capable database searchers.
They can perform simple searches like, “find me images of cars”, or more complex
or loosely defined searches like, “find me images that depict pride in America”.
In either case one must examine all, or a large portion, of the database. As the
prevalence and size of multimedia databases increases, automated techniques will
become critical in the successful retrieval of relevant information. Such techniques



must be able to measure the similarity between the visual content of natural im-
ages.

Many algorithms have been proposed for image database retrieval. For the most
part these techniques compute a feature vector from an image which is made up of
a handful of image measurements. Visual or semantic distance is then equated
with feature distance. Examples include color histograms, texture histograms,
shape boundary descriptors, eigenimages, and hybrid schemes (QBIC, ; Niblack
et al., 1993; Virage, ; Kelly, Cannon and Hush, 1995; Pentland, Picard and Sclaroff,
1995; Picard and Kabir, 1993; Santini and Jain, 1996). A query to such a system typ-
ically consists of specifying two types of parameters: the target values of each of
the measurements; and a set of weights, which determine the relative importance
of deviations from the target in each measurement dimension. The features used
by these systems each capture some very general property of images. As a result
of their lack of specificity however, many images which are actually very different
in content generate the same feature responses.

In contrast our approach extracts thousands of very specific features. These fea-
tures measure both local texture and global structure. The feature extraction algo-
rithm computes color, edge orientation, and other local properties at many reso-
lutions. This sort of multi-scale feature analysis is of critical importance in visual
recognition and has been used successfully in the context of object recognition (von
der Malsburg, 1988; Rao and Ballard, 1995; Viola, 1996)

Our system differs from others because it detects not only first order relationships,
such as edges or color, but also measures how these first order relationships are
related to one another. Thus by finding patterns between image regions with par-
ticular local properties, more complex – and therefore more discriminating – fea-
tures can be extracted. This type of repeated, non-linear, feature detection bears
a strong resemblance to the response properties of visual cortex cells (Desimone
et al., 1984). While the mechanism for the responses of these cells is not yet clear,
this work supports the conclusion that this type of representation is very useful in
practical visual processing.

2 Computing the Characteristic Signature

The “texture-of-texture” measurements are based on the outputs of a tree of non-
linear filtering operations. Each path through the tree creates a particular filter
network, which responds to certain structural organization in the image. Measur-
ing the appropriately weighted difference between the signatures of images in the
database and the set of query-images, produces a similarity measure which can be
used to rank and sort the images in the database.

The computation of the characteristic signature is straightforward. At the highest
level of resolution the image is convolved with a set of 25 local linear features
including oriented edges and bars. The results of these convolutions are 25 feature
response images. These images are then rectified by squaring, which extracts the
texture energy in the image, and then downsampled by a factor of two. At this
point there are 25 half scale output images which each measure a local textural
property of the input image. For example one image is sensitive to vertical edges,
and responds strongly to both skyscrapers and picket fences.

Convolution, rectification and downsampling is then repeated on each of these
25 half resolution images producing 625 quarter scale “texture-of-texture” images.
The second layer will respond strongly to regions where the texture specified in



the first layer has a particular spatial arrangement. For example if horizontal align-
ments of vertical texture are detected, there will be a strong response to a picket
fence and little response to a skyscraper. With additional layers additional speci-
ficity is achieved; repeating this procedure a third time yields 15,625 meta-texture
images at eighth scale.

Each of the resulting meta-textures is then summed to compute a single value and
provides one element in the characteristic signature. When three channels of color
are included there are a total of 46,875 elements in the characteristic signature.
Once computed, the signature elements are normalized to reduce the effects of
contrast changes.

More formally the characteristic signature of an image is given by:

Si, j ,k,c(I) = ∑
pixels

Ei, j ,k(Ic) (1)

where I is the image, i, j and k index over the different types of linear filters, and
Ic are the different color channels of the image. The definition of E is:

Ei(I) = 2 ↓ [(Fi⊗ I)2] (2)

Ei, j(I) = 2 ↓ [(Fj ⊗Ei(I))2] (3)

Ei, j ,k(I) = 2 ↓ [(Fk⊗Ei, j(I))2] . (4)

where Fi is the ith filter and 2 ↓ is the downsampling operation.

3 Using Characteristic Signatures To Form Image Queries

In the “query by image” paradigm, we describe similarity in terms of the difference
between an image and a group of example query images. This is done by compar-
ing the characteristic signature of the image to the mean signature of the query
images. The relative importance of each element of the characteristic signature
in determining similarity is proportional to the inverse variance of that element
across the example-image group:

L =−∑
i
∑

j
∑
k

∑
c

[
Si, j ,k,c(Iq)−Si, j ,k,c(Itest)

]2

Var
[
Si, j ,k,c(Iq)

] (5)

where Si, j ,k,c(Iq) and Var
[
Si, j ,k,c(Iq)

]
are the mean and variance of the characteris-

tic signatures computed over the query set. This is a diagonal approximation of
the Mahalanobis distance (Duda and Hart, 1973). It has the effect of normalizing
the vector-space defined by the characteristic signatures, so that characteristic ele-
ments which are salient within the group of query images contribute more to the
overall similarity of an image.

In Figure 1 three 2D projections of these 46,875 dimensional characteristic signa-
ture space are shown. The data points marked with circles are generated by the
10 images shown at the top of Figure 3. The remaining points are generated by
2900 distractor images. Comparing (a) and (b) we see that in some projections the
images cluster tightly, while in others they are distributed. Given a sample of im-
ages from the target set we can observe the variation in each possible projection
axis. Most of the time the axes shown in (a) will be strongly discounted by the
algorithm because these features are not consistent across the query set. Similarly
the axes from (b) will receive a large weight because the target images have very
consistent values.



(a) (b) (c)

Figure 1: In some projections target groups do not cluster (a), and they do in oth-
ers (b). However, different target groups will not necessarily cluster in the same
projections (c).

The axes along which target groups cluster, however, differ from target group to
target group. As a result it is not possible to conclude that the axes in (b) are simply
better than the axes in (a). In Figure 1 (c) the same projection is shown again this
time with a different target set highlighted (with asterisks).

4 Experiments

In the first set of experiments we use a database of 2900 images from 29 Corel Photo
CD (collections 1000-2900.) Figure 2 shows the results of typical user query on this
system. The top windows in each Figure contain the query-images submitted by
the user. The bottom windows show the thirty images found to be most similar;
similarity decreases from upper left (most similar) to lower right.

Though these examples provide an anecdotal indication that the system is generat-
ing similarity measures which roughly conform to human perception, it is difficult
to fully characterize the performance of this image retrieval technique. This is a
fundamental problem of the domain. Images vary from each other in an astronom-
ical number of ways, and similarity is perceived by human observers based upon
complex interactions between recognition, cognition, and assumption. It seems
unlikely that an absolute criterion for image similarity can ever be determined,
if one truly exists. However using sets of images which we believe are visually
similar, we can establish a basis for comparing algorithms.

To better measure the performance of the system we added a set of 10 images to
the 2900 image database and attempted to retrieve these new images. We com-
pare the performance of the present system to ten other techniques. Though these
techniques are not as sophisticated as those used in systems developed by other
researchers, they are indicative of the types of methods which are prevalent in the
literature.

In each experiment we measure the retrieval rates for a set of ten target images
which we believe to be visually similar because they consist of images of a single
scene. Images in the target set differ due to variation of a single visual character-
istic. In some of the target sets the photographic conditions have been changed,
either by moving the camera, the objects or the light. In other target sets post pho-
tograph image manipulation has been performed. Two example target sets are
shown in Figure 3.



Figure 2: Sample queries and top 30 responses.



Figure 3: Two target sets used in the retrieval experiments. TOP: Variation of object
location. BOTTOM: Variation of hard shadows.

In each experiment we perform 45 database queries using every possible pair of
images from the target set. The retrieval methods compared are: ToT The current
textures-of-textures system; RGB-216(or 512)C R,G,B color histograms using 216
(or 512) bins by dividing each color dimension into 6 (or 8) regions. The target
histogram is generated by combining the histograms from the two model images;
HSV-216(or 512)C same using H,S,V color space; RGB(or HSV)-216(or 512)NN
histograms in which similarity is measured using a nearest neighbor metric; COR-
full(and low)res full resolution (and 4× downsampled) image correlation.

Rankings for all 10 target images in each of the 45 queries are obtained for each
variation. To get a comparative sense of the overall performance of each technique,
we show the number of target images retrieved with a Neyman-Pearson criterion
of zero, i.e. no false positives Figure 4. The textures-of-textures model substan-
tially outperforms all of the other techniques, achieving perfect performance in 13
experiments.

5 Discussion

We have presented a technique for approximating perceived visual similar-
ity, by measuring the structural content similarity between images. Using
the high dimensional “characteristic signature” space representation, we di-
rectly compare database-images to a set of query-images. A world wide
web interface to system has been created and is available via the URL:

http://www.ai.mit.edu/ ∼jsd/Research/ImageDatabase/Demo

Experiments indicate that the present system can retrieve images which share
visual characteristics with the query-images, from a large non-homogeneous
database. Further, it greatly outperforms many of the standard methods which
form the basis of other systems.
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Figure 4: The percentage of target images ranked above all the distractor images,
shown for 15 target sets such as those in Figure 3. The textures-of-textures model
presented here achieves perfect performance in 13 of the 15 experiments.

Though the results presented here are encouraging, on real world queries, the re-
trieved images often contain many false alarms, such as those in Figure 2; however,
we believe that with additional analysis performance can be improved.
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