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Abstract

This paper outlines a technique for treating input texture images
as probability density estimators from which new textures, with
similar appearance and structural properties, can be sampled. In a
two-phase process, the input texture is first analyzed by measuring
the joint occurrence of texture discrimination features at multiple
resolutions. In the second phase, a new texture is synthesized by
sampling successive spatial frequency bands from the input texture,
conditioned on the similar joint occurrence of features at lower spa-
tial frequencies. Textures synthesized with this method more suc-
cessfully capture the characteristics of input textures than do previ-
ous techniques.

1 Introduction

Synthetic texture generation has been an increasingly active re-
search area in computer graphics. The primary approach has been
to develop specialized procedural models which emulate the gen-
erative process of the texture they are trying to mimic. For ex-
ample, models based on reaction-diffusion interactions have been
developed to simulate seashells [15] or animal skins [14]. More
recently work has been done which considers textures as samples
from probabilistic distributions. By determining the form of these
distributions and sampling from them, new textures that are simi-
lar to the originals can, in principle, be generated. The success of
these methods is dependent upon the structure of the probability
density estimator used in the sampling procedure. Recently sev-
eral attempts at developing such estimators have been successful in
limited domains. Most notably Heeger and Bergen [10] iteratively
resample random noise to coerce it into having particular multireso-
lution oriented energy histograms. Using a similar distribution, and
a more rigorous resampling method Zhu and Mumford [16] have
also achieved some success. In work by Luettgen,et al [12] mul-
tiresolution Markov random fields are used to model relationships
between spatial frequencies within texture images.

In human visual psychophysics research, the focus of texture per-
ception studies has been on developing physiologically plausible
models of texture discrimination. These models involve determin-
ing to which measurements of textural variations humans are most
sensitive. Typically based on the responses of oriented filter banks,
such models are capable of detecting variations across some patches
perceived by humans to be different textures ([1, 2, 3, 4, 6, 9, 11],
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for example.) The approach presented here uses these resulting psy-
chophysical models to provide constraints on a statistical sampling
procedure.

In a two-phase process, the input texture is first analyzed by
computing the joint occurrence, across multiple resolutions, of sev-
eral of the features used in psychophysical models. In the second
phase, a new texture is synthesized by sampling successive spatial
frequency bands from the input texture, conditioned on the similar
joint occurrence of features at all lower spatial frequencies.

The sampling methodology is based on the hypothesis that tex-
ture images differ from typical images in that that there are regions
within the image which, to some set of feature detectors, are less
discriminable at certain resolutions than at others. By rearrang-
ing textural components at locations and resolutions where the dis-
criminability is below threshold, new texture samples are generated
which have similar visual characteristics.

2 Motivation

The goal of probabilistic texture synthesis can be stated as follows:
to generate a new image, from an example texture, such that the new
image is sufficiently different from the original yet still appears as
though it was generated by the same underlying stochastic process
as was the original texture.

If successful, the new image will differ from the original, yet
have perceptually identical texture characteristics. This can be mea-
sured psychophysically in texture discrimination tests. To satisfy
both criteria, a synthesized image should differ from the original in
the same way as the original differs from itself.

From an input texture patch, such as that shown in Figure 1,
there are infinitely many possible distributions which could be in-
ferred as the generative process. Sampling from such distributions
results in different synthesized textures, depending on the priors as-
sumed. Depending on the accuracy of these assumptions, the result-
ing textures may, or may not, satisfy the above criteria for “good”
synthesis.

One possible prior over the distribution of pixels is that the orig-
inal texture is the only sample in the distribution, and that no other
images are texturally similar. From this assumption, simple tiling
results, as shown in Figure 2. Clearly this fails the “sufficiently
different” criteria stated above.

Another feasible – though also clearly inadequate – prior is to
assume that the pixels in the input texture are independently sam-
pled from some distribution. Textures generated with this model do
not capture the non-random structure within the original. The re-
sult of such an operation is shown in Figure 3. As expected it fails
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Figure 1: An example texture image for input to a texture synthesis
process.

Figure 2: Simple repetition of the image does not result in a texture
which appears to have come from the same stochastic distribution
as the original.

Figure 3: Textures that contain randomness not present in the orig-
inal are perceptually different textures. This texture was generated
by uniformly sampling the pixel values of the original. The original
texture superimposed on the synthetic one is easily identified.

Figure 4: Sampling each spatial frequency band from the corre-
sponding band in the original does not capture the detail which is
characteristic of the input texture, indicating that relationships be-
tween frequencies is critical. The synthesized texture is different
from the superimposed original texture, which is clearly discrim-
inable.

Figure 5: The objective is to generate a patch such as the one above
which is different from the original yet appears as though it could
have been generated by the same underlying stochastic process.
This texture, which was synthesized using the technique described
in this paper, is perceptually very similar to the original, and the
superimposed original is not readily located.



to capture the character of the original and is perceptually differ-
ent. This is evidenced by the ease with which the original can be
located when superimposed on the synthesized texture. This effect,
commonly known as “popout” ([3, 9, 11], e.g.), occurs because the
textures are perceptually different and do not appear to have been
generated by the same process.

The goal of texture synthesis is to generate a texture, such as that
shown in Figure 5, which is both random, and indiscriminable from
the original texture. Figure 5 satisfies these criteria in that it differs
significantly from the original yet appears to have been generated
by the same physical process. Because of the perceptual similarity
between this texture, which was synthesized by the procedure in
this paper, and the input texture (generated by some other process)
it is difficult to locate the region which contains the superimposed
original.

3 Functional synthesis framework

Mathematically, the goal of texture synthesis is to develop a func-
tion, F, which takes a texture image,Iinput, to a new texture sample,
Isynth, such that the difference betweenIinput and Isynth is above
some measure of visual difference from the original, yet is textu-
rally similar. Formally,

F (Iinput) = Isynth (1)

subject to the constraints that

D�

�
Iinput; Isynth

�
< Tmax disc (2)

and
V �

�
Iinput; Isynth

�
> Tmin diff (3)

whereD� is a perceptual measure of the perceived difference of
textural characteristics, andV � a measure of the perceived visual
difference between the input and synthesized images. To be accept-
able, the perceived difference in textural characteristics must fall
below a maximum texture discriminability thresholdTmax disc, and
the perceived visual difference must be above a minimum visual
difference threshold,Tmin diff .

The success of a synthesis technique is measured by its ability to
minimizeTmax discwhile maximizingTmin diff .

Human perception of texture differences, indicated by the hypo-
thetical functionD�, depends on our prior beliefs about how tex-
tures should vary. These beliefs incorporate much of human visual
experience; therefore, determining a computable metric,D, to ap-
proximateD�, is a complex and often ill-defined task. Devising
a good approximation forV � is an even more difficult task. For
texture synthesis purposes however, a poor approximation such as
direct correlation, is sufficient.

The difficulty of determining a functionD, to approximateD�,
depends on the structure and textual complexity of the two images.
Many psychophysically based approximations have been proposed
(e.g. [4, 6].)

Clearly, more complex textures can be represented in larger im-
ages; therefore, determining a discrimination function, sayDsmall,
between images which have few pixels is less difficult than deter-
mining a similar functionDlarge over larger images.

Using a multiresolution approach, this work approximatesD�

with a process which begins from low resolution – small – images.
By decomposing the functionF into a set of functionsFi which
each generate a single spatial frequency band of the new texture,
Isynth.

The domain of the each functionFi is a subset of the domain of
F , asFi’s need only be a function of the information contained
in the low spatial frequency bands ofIinput. An intuitive proof

of this is given by the following induction. Consider a new im-
age,I 0input, which is generated from an imageIinput by removing its
high frequencies by low pass filtering with a Gaussian kernel. With
just I 0input, and without knowledge of the additional information in
Iinput, one could still consider generating a new imageI 0synthwhich
is similar in textural appearance toI 0input. Thus, the process of gen-
eratingI 0synth from I 0input is independent of highest frequency band
of Iinput. This argument can be repeated to show thatI 00synth can be
generated fromI 00input without knowledge ofI 0input, and so on.Fi is
then given by:

Fi
�
I 0:::0input

�
=

= Fi
�
Li
�
Iinput

�
; Li+1

�
Iinput

�
; � � � ; Ln

�
Iinput

��
(4)

= Li
�
Isynth

�

whereLi
�
Isynth

�
is the ith spatial frequency octave (or equiva-

lently theith level of the Laplacian pyramid decomposition.) The
original function,F , in equation (1) is then constructed by combin-
ing the spatial frequency bands generated byF0 throughFN The
method presented here simplifies the difficulty of minimizing (ap-
proximate)D� difference by initially synthesizing textures which
are similar at low spatial frequencies, and then maintaining that
similarity as it progresses to higher frequencies. A new texture is
synthesized by generating each of its spatial frequency bands so
that as higher frequency information is added textural similarity is
preserved.

4 Texture generation procedure

4.1 Hypothesis of texture structure

The sampling procedure used by this method is dependent upon the
accuracy of the following hypothesis. Images perceived as textures
differ from other images in that below some resolution they contain
regions which differ by less than some discrimination threshold.
Further, if the threshold is strict enough, randomization of these re-
gions does not change the perceived characteristics of the texture.
In other words, at some low resolution texture images contain re-
gions whose difference measured byD� is small, and reorganizing
these low frequency regions, while retaining their high frequency
detail will not change its textural (D�) characteristics yet will in-
crease its visual (V �) difference.

In Figure 6, at each resolution examples of potentially inter-
changeable regions are highlighted. Rearranging the image at
these resolutions and locations, while retaining their high resolu-
tion structure, corresponds to moving whole textural units (which
in Figure 6 are individual pebbles.)

4.2 Analysis and Synthesis Pyramids

A new texture is synthesized by generating each of its spatial fre-
quency bands so that as higher frequency information is added tex-
tural similarity is preserved. Each synthesized band is generated
by sampling from the corresponding band in the input texture, con-
strained by the presence of local features. The general flow of this
process is outlined in Figure 7.

In a first phase the input image is decomposed into multiple res-
olutions. This is done using the standard Laplacian pyramid formu-
lation where band pass information at the point(x; y) at leveli, in
the imageI, is given by:

Li (I; x; y) = (Gi (I)� 2"[Gi+1 (I)]) (x; y) (5)



Figure 6: The synthesis procedure is based upon the hypothesis that at lower resolutions there are regions which are below some threshold of
discriminability and that the randomness within a texture is in the locations of these regions.

Figure 7: Multiple regions in the analysis pyramid can be candi-
date values for a location in the synthesis pyramid (as shown in
Figure 8).

whereGi (I) is a low-pass down-sampling operation:

Gi (I) = 2#[Gi�1 (I)
 g] (6)

where2"[�] and2#[�] are the2� up- and down-sampling operations
respectively;g is a two dimensional Gaussian kernel; andG0 (I) =
I.

Each level of the Laplacian pyramid contains the information
from a one octave spatial frequency band of the input For a com-
plete discussion of Laplacian and Gaussian pyramids, the reader is
referred to [5].

From each level of this Laplacian pyramid a corresponding level
of a new pyramid is sampled. If this sampling is done independently
at each resolution, as shown in Figure 4, the synthesized image
fails to capture the visual organization characteristic of the original,
indicating that the values chosen for a particular spatial frequency
should depend on the values chosen at other spatial frequencies.
From the iterative proof, above, we can also infer that these values
only depend values at that and at lower spatial frequencies.

However, using only the Laplacian information in the lower fre-
quency bands to constrain selection is also insufficient. Such a pro-
cedure which samples from a distribution conditioned exclusively
on lower resolutions only loosely constrains the relationship be-
tween the ‘child’ nodes of different ‘parents.’ Sampling from such
a distribution can result in high frequency artifacts which are not
present in the intended distribution. To prevent this, constraints
must be propagated across children of different parents; however,
constraint propagation on a two dimensional network results in
dependency cycles, from which sampling requires iterative proce-
dures, and which is not, in general, guaranteed to converge in finite
time. This technique constrains the selection process within a spa-
tial frequency band without creating cycles by using image features
to constrain sampling.

Because the objective is to synthesize textures that contain the

same textural characteristics as the original, yet vary from it in
global form, it is assumed that global structure within the input
texture is coincidental and should not constrain synthesis. Given
this assumption it is sufficient to use the responses of a set oflocal
texture measures as features which provide the basis for an approx-
imation to the human perceptual texture-discriminability function
D�. A filter bank of oriented first and second Gaussian derivatives
– simple edge and line filters – were used in addition to Laplacian
response. At each location(x; y) in the analysis pyramid leveli,
the response of each featurej, is computed for use in constraining
the sampling procedure. When, at the lowest resolutions, the pyra-
mid layers are too small, the features cannot be computed, and a
constant value is used.

F j
i (I; x; y) =

�
(Gi (I)
 fj) (x; y) if size ofGi (I) � fj
0 otherwise

(7)
The constraints provided by these features are stronger than just

the “parent” value, because they capture some of the relationships
between pixels within a local neighborhood. This “analysis pyra-
mid” which contains the multiresolution band-pass and feature re-
sponse information, is directly computed from the input image.

4.3 Sampling procedure

A “synthesis pyramid” is generated by sampling from the analysis
pyramid conditioned on the joint occurrence of similar feature re-
sponse values at multiple resolutions. When the synthesized pyra-
mid has been completely generated, the band-pass information is
combined to form the final synthesized texture.

Initially the top level – lowest resolution – of the analysis pyra-
mid, which is a single pixel, is copied directly into the synthesis
pyramid. When synthesizing a texture larger than the original, the
top level of the synthesis pyramid is larger that in the analysis pyra-
mid; in this case the analysis level is simply repeated to fill the
synthesis level.

Subsequent levels of the synthesis pyramid are sampled from the
corresponding level of the analysis pyramid. At each location in the
synthesis pyramid, the local “parent structure” is used to constrain
sampling. The parent structure,~Si, of a location,(x; y), in image
I, at resolutioni, is a vector which contains the local response for
features1 throughM , at every lower resolution fromi+ 1 toN :

~Si (I; x; y) =h
F 0
i+1

�
x
2
; y
2

�
; F 1

i+1

�
x
2
; y
2

�
; � � � ; FM

i+1

�
x
2
; y
2

�
;

F 0
i+2

�
x
4
; y
4

�
; F 1

i+2

�
x
4
; y
4

�
; � � � ; FM

i+2

�
x
4
; y
4

�
;

� � � ;

F 0
N

�
x

2N
; y

2N

�
; F 1

N

�
x

2N
; y

2N

�
; � � � ;

FM
N

�
x

2N
; y

2N

� iT
(8)

The parent structure of a location in a synthesis pyramid is de-
picted in Figure 8; in this schematic, each cell represents the set of
local feature responses.



Figure 8: The distribution from which pixels in the synthesis pyra-
mid are sampled is conditioned on the “parent” structure of those
pixels. Each element of the parent structure contains a vector of the
feature measurements at that location and scale.

Two locations are considered indistinguishable if the square dif-
ference between every component of their parent structures is below
some threshold. For a given location(x0; y0) in the synthesis im-
age,Isynth, the set of all such locations in the input image can be
computed:

Ci
�
x0; y0

�
=

�
(x; y)

����D
�

~Si
�
Isynth; x

0; y0
�
;

~Si
�
Iinput; x; y

�
�
� ~Ti

�
(9)

Where the distance functionD, between two parent structuresu
andv, is given by:

D [u; v] =
(u� v)T (u� v)

Z
(10)

where Z is a normalization constant which eliminates the effect of
contrast, equal to

P
x;y

~Si
�
Iinput; x; y

�
.

To be a member of setCi (x
0; y0) the distance between each

component of the parent structures must be less than the corre-
sponding component in a vector of thresholds for each resolution
and feature:

~Ti =
�

T
0

i+1 T
1

i+1 � � � T
M
i+1

T 0

i+2 T
1

i+2 � � � T
M
i+2

� � � (11)

T 0

N T 1

N � � � TM
N

�T
Where each elementT j

i is a threshold for thejth filter response at
theith resolution.

The values for new locations in the synthesis pyramid are sam-
pled uniformly from among all regions in the analysis pyramid that
have a parent structure which satisfies equation (??). This yields
a probability distribution over spatial frequency band values condi-
tioned on the joint occurrence of features at lower spatial frequen-
cies:

P
�
Li
�
Isynth; x

0; y0
�
) Li

�
Iinput; x; y

� ��� (x; y) 2 Ci (x0; y0)�

= 1 = kCi (x
0; y0)k

(12)

Figure 9: An input texture is decomposed to form an analysis pyra-
mid, from which a new synthesis pyramid is sampled, conditioned
on local features within the pyramids. A filter bank of local texture
measures, based on psychophysical models, are used as features.

Variations between the analysis and synthesis pyramids occur
when multiple regions in the analysis pyramid satisfy the above cri-
terion. The parent structure of such a group of candidate locations
is depicted in Figure 9. As the thresholds increase, the number of
candidates from which the values in the synthesis pyramid will be
sampled, increases. The levels of the thresholds,T j

i , mediate the
rearrangement of spatial frequency information within the synthe-
sized texture, and encapsulate a prior belief about the degree of ran-
domness in the true distribution from which the input texture was
generated.

Algorithmically, this sampling procedure can be described with
the pseudo-code:

SynthesizePyramid
Loop i from top level-1 downto 0

Loop (x0; y0) over Pyrsynth [level i]
C = ;

Loop (x; y) over Pyranalysis [level i]
C = C

S
f(x; y)g

Loop v from top level downto i+ 1

Loop j for each feature

if D

�
Pyranalysis [v][j]

�
x=2v�i; y=2v�i

�
;

Pyrsynth [v][j]
�
x
0=2v�i; y0=2v�i

�
�

< threshold[level v][feature j]
then

C = C � f(x; y)g
break to next (x; y)

selection = UniformRandom [0; kCk]
(x; y) = C[selection]
Pyrsynth [v] (x0; y0) = Pyranalysis [v] (x; y)

With more complex code, additional efficiency can be obtained
by skipping whole regions which share a parent structure element
that is above threshold difference.

Upon the completion of this sampling process for each level
of the synthesis pyramid the synthesized band-pass informa-
tion is combined to form the new texture using a standard
CollapsePyramid procedure.

Though each band is sampled directly from the input image, the
image which results from the recombination of each of these syn-
thesized layers contains pixel values (i.e. RGB colors) not present



Figure 11: This series of 6 images (b-g) was generated from the
original (a). For each a single threshold is used for all features and
resolutions. Thresholds increase from 0.05 to 0.3 from (b) to (g).

in the original, because non-zero thresholds allow synthesized spa-
tial frequency hierarchies which differ from those in the original.

Because the Laplacian pyramid representation is over-complete,
i.e. the space spanned by Laplacian pyramids is4=3 larger than that
spanned by images, it is possible to synthesize pyramids that are off
of the manifold of real-images. When this occurs, the pyramid is
projected onto the closest point on this manifold before reconstruc-
tion. This is done by collapsing the pyramid using full precision
images, then replacing values above or below the range of legal
pixel values with the closest legal value.

5 Examples of texture synthesis

For 800 full color input textures, we synthesized new textures, each
four times larger than the original. Some typical results are shown
in Figure 10. The results from these examples are indicative of the
synthesis performance on the entire set and were chosen only be-
cause they reproduce well on paper. The results of all 800 textures
are available on the world wide web via the URL:

http://www.ai.mit.edu/�jsd/Research/TextureSynthesis

In the synthesis examples through out this paper thresholds of the
form:

T j
i = �=i� (13)

were used with� 2 [0; 0:4] and� 2 f0; 1g. The parameter� es-
tablishes the prior belief about the sensitivity ofD�, the threshold
Tmax disc in equation (2); larger� incorporates the belief that the
‘true’ distribution which generated the input texture is spatially ho-
mogeneous, and that the low frequency structure within the input
image should not be an influential factor in region discrimination.

Shown in Figure 11 are a series of synthesized textures for� = 0
and� = f0:05; 0:10; 0:15; 0:20; 0:25; 0:30g. As the threshold in-
creases, progressively more locations in the original become in-
distinguishable, and the amount of variation from the original in-
creases. For this texture, the synthesized image which balances suf-
ficient difference from the original with perceptual similarity, lies
somewhere between� = :15 and� = :20 (images d-e.) For dif-
ferent images, the ideal threshold is different, reflecting our prior

Figure 12: A series of synthesized textures for which the thresholds
are inversely proportional to the spatial frequency and proportional
to 0.05 in (b) to 0.3 in (g).

belief about the randomness implied by the original. Another syn-
thesis series for a different input image is shown in Figure 12. In
this case� = 1, a varies over the same range, and the ideal thresh-
old is somewhere around� = 0:25 (image f.)

6 Discussion

Because it uses only local constraints, the estimator presented here
cannot model, texture images with complex visual structures. Such
structures include: reflective and rotational symmetry; progressive
variations in size, color, orientation, etc.; and visual elements with
internal semantic meaning (such as symbols) or which have mean-
ing in their relative positions (such as letters.)

Simply adding additional complex features to attempt to capture
these sorts of visual structures over conditions the sampling pro-
cedure, and simple tiling results. If appropriate thresholds could
be determined through additional analysis of the input image, the
effects of complex features could be mediated, and they might pro-
vide useful constraints.

Because it samples exclusively from the input image, this model
assumes that the ‘true’ distributions from which each spatial fre-
quency band in the input was generated, can be accurately approx-
imated by only those values present in that image. If there were
a model for the probability of values not present in the original,
synthesized textures could possibly be generated which contain ad-
ditional variation from the original which does not increase texture
(D�) difference yet increases the visual (V �) difference.

7 Conclusion

We have presented a method for synthesis of a novel image from
an input texture by generating and sampling from a distribution.
This multiresolution technique is capable of capturing much of the
important visual structure in the perceptual characteristics of many
texture images; including artificial (man-made) textures and more
natural ones, as shown in Figure 13. The input texture is treated as
probability density estimator by using the joint occurrence of fea-
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Figure 10: Texture synthesis results. The smaller patches are the input textures, and to their right are synthesized images which are 4 or 9
times larger.



Figure 13: The characteristics of both artificial / man-made and
natural textures can be captured and replicated with this process.

tures across multiple resolutions to constrain sampling. Prior be-
liefs about the ‘true’ randomness in the input are incorporated into
the model through the settings of thresholds which control the level
of constraint provided by each feature. Many of the textures gener-
ated by sampling from this estimator can simultaneously satisfy two
the two criteria of successful texture synthesis: the synthesized tex-
tures are sufficiently different from the original, and appear to have
been created by the same underlying generative process. These tex-
tures can be synthesized from more intricate input examples, and
produce textures which appear more akin to the originals, than those
produced by earlier techniques (Figure 14.)
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