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Abstract
We describe a technique for using the joint occurrence

of local features at multiple resolutions to measure the
similarity between texture images. Though superficially
similar to a number of “Gabor” style techniques, which
recognize textures through the extraction of multi-scale
feature vectors, our approach is derived from an accu-
rate generative model of texture, which is explicitly multi-
scale and non-parametric. The resulting recognition proce-
dure is similarly non-parametric, and can model complex
non-homogeneous textures. We report results on publicly
available texture databases. In addition, experiments in-
dicate that this approach may have sufficient discrimina-
tion power to perform target detection in synthetic aper-
ture radar images (SAR).

1 Introduction
The notion of texture is difficult to capture for-

mally. Textures usually can be described informally
as the output of some physical process wherein lo-
cal structure is repeated seemingly at random. Two
texture patches are considered to be the same if they
appear to have been generated by the same process.
Previous approaches to texture classification make
strong limiting assumptions about the structure of
the physical processes. These assumptions allow one
to efficiently generalize from a limited set of exam-
ple images at the cost of failing to model textures
for which the assumptions are invalid. For exam-
ple, many approaches fail to accurately model tex-
tures with long-scale structure that is neither local
in space nor local in frequency (e.g. long edges or
sharp discontinuities). Other approaches, because
they recognize textures using simple local measures,

implicitly assume that textures are self-similar at ev-
ery scale. This excludes even very common textures
like bricks, or polka dots which are not self-similar at
short scales – the space between the bricks looks very
different from the bricks themselves.

Here we present a non-parametric multi-scale sta-
tistical texture model which addresses both of these
limitations. It models the joint distribution of pixels
in an image as a coarse to fine probabilistic process,
where decisions made at high frequencies are condi-
tioned on those made at lower frequencies. Multi-
resolution conditional distributions can model long-
scale structure as conjunctions of low and high fre-
quency features. The conditional distributions are
estimated from example images in a flexible non-
parametric fashion which can capture complex and
multi-modal distributions. In this way the model can
capture both the bricks and the space between them
in a single distribution.

1.1 Probabilistic Modeling
The probabilistic modeling of images is an en-

deavor which reaches back to the 60’s and 70’s (Duda
and Hart, 1973). The allure of statistical approaches
is that they provide a unified view of model estima-
tion, classification and generation. The perfect sta-
tistical model would provide P(I |C), a function of
images which returns the likelihood of an image I
given that it is an example of class C. With such
a distribution, Bayes’ Law can be used to estimate
the likelihood of a particular class given some im-
age. Furthermore, P(I |C) provides a principled mech-
anism for generating or sampling “typical” examples
of the class. Finally, most distributions have a set of



parameters W, called sufficient statistics, for which
P(I |C,WC) = P(I |WC). Theses parameters may be es-
timated from a small set of example images and of-
ten generalize to the entire class. Though the advan-
tages of a statistical approach are compelling, to date,
a generic, efficient, and unified statistical model for
natural images has yet to appear. Nevertheless, many
approaches have shown good performance with lim-
ited classes of textures.

Perhaps the most influential statistical model for
generic images is the Markov random field (MRF)
(Geman and Geman, 1984). MRFs can be used to de-
scribe a very wide variety of image distributions us-
ing information about local regularities between pix-
els. The parameters of an MRF determine the con-
ditional distribution of a pixel given its neighbors:
P(I(x,y)|N(x,y)) where x,y range over the pixel in-
dices, I(x,y) is the pixel value, and N(x,y) is the subset
of I which neighbors x,y. In their most general form,
reasoning with MRFs can require vast amounts com-
putation, often causing convergence to be infeasibly
slow.

The complexity of generic MRFs is largely elim-
inated if the conditional distributions are assumed
to be Gaussian. Such a process is called a Gaussian
Markov random field (GMRF) (Chellappa and Chat-
terjee, 1985). The conditional distributions which de-
fine a GMRF can be estimated from the correlations
between pixels. Since the joint distribution of the pix-
els in an image under a GMRF model is also Gaus-
sian, the computation of the likelihood of an image
given a class is a simple operation. The assumption
of Gaussian statistics does however limit the scope of
the modeled textures. For example, every marginal
distribution or linear function of a GMRF distribu-
tion must be unimodal and Gaussian. Therefore GM-
RFs cannot model image classes which contain dis-
crete structures, like a checkerboard pattern. More-
over, GMRFs cannot distinguish between two images
with the same second-order statistics.

Besides MRF’s, another influential class of ap-
proaches use Gabor-like filters to analyze textures
(Santini and Jain, 1996; Fogel and Sagi, 1989). These
approaches analyze texture images by convolving
with a set of “texture features”, frequently derivatives
of Gaussians. Using a set of feature detectors f1... fn, n
response images can be computed Fj = f j ⊗ I , where
⊗ denotes convolution. At every image point x,y a
feature vector is defined

V(x,y) = [F1(x,y),F2(x,y), ...,Fn(x,y)] .

For some natural textures only few ’typical’ feature
vectors occur, and these texture classes are often

modeled with one, or perhaps a few of these typical
feature vectors. Textures are then recognized when
these typical features are detected in new images.

The Gabor and GRMF techniques are not as dis-
similar as they may at first appear. The first step
for Gabor techniques is to convolve the texture image
with a set of Gabor filters; the first step in GMRF tech-
niques is to project the image onto the eigenvectors of
the covariance matrix. Both these operations tend to
whiten or decorrelate the pixels of the resulting image
(Daugman, 1985; Olshausen and Field, 1996; Duda
and Hart, 1973). The main difference between GMRF
and Gabor approaches is that GMRFs assume that the
texture has a Gaussian distribution once whitened,
while the Gabor approaches, which are essentially
non-parametric, assume that the distribution of im-
ages is better approximated with a few sample points.
Not surprisingly, Gabor techniques are more success-
ful than GMRF’s precisely when the texture class has
a non-Gaussian or multi-modal distribution.

These same principles underlie recent approaches
using wavelets to model realistic natural images.
These approaches first use a wavelet transform –
which is often closely approximated by a set of Ga-
bor filters – to whiten the image. The wavelet co-
efficients are then modeled with histograms which
allows for distributions which are distinctly non-
Gaussian. Under these models, images are consid-
ered members of a class if the observed histograms of
features matches the nominal histogram for the class:
hj = H(Fj), where H(·) is the pixel histogram of a fea-
ture image. From the histogram it is possible to com-
pute p∗j (v) = hj (v)

∑k hk(v) , an estimate for the statistical dis-
tribution of pixels in the feature image Fj .

By making the assumption that each of the fea-
ture responses is statistically independent – a much
stronger, and more limiting assumption – a texture
class can be modeled with the distribution:

∏
j ,x,y

p∗j (Fj(x,y))

These insights have been used for noise reduction
(Donoho and Johnstone, 1993; Simoncelli and Adel-
son, 1996), and example driven texture synthesis
(Heeger and Bergen, 1995). Essentially, these ap-
proaches assume that natural images are caused by
the independent cooccurence of wavelet features.
The assumption of independence makes these ap-
proaches tractable, but it is also their main weakness.
We conjecture that there in fact strong cross-scale de-
pendence between the wavelet coefficients of an im-
age (which is consistent with observations in (Bucci-



grossi and Simoncelli, 1997))1.
In many types of natural images there are long-

scale features which span both space and frequency
(e.g. extended edges). The appearance of such
features requires the cooccurence of many localized
band-pass features – a cooccurence that is extremely
unlikely if we assume that the features are statisti-
cally independent. So while the coefficients of the
wavelet transform are often uncorrelated, they are
not independent. A model which recognizes these
statistical relationships and exploits them will be able
to more effectively generalize over the image class.
We approximate the joint distribution of coefficients
as a chain, in which coefficients that occur higher in
the wavelet pyramid condition the distribution of co-
efficients at lower levels (i.e. low frequencies con-
dition the generation of higher frequencies). This
allows for the modeling of long-scale relationships
within images.

We have introduced the generic model elsewhere
(De Bonet, 1997; De Bonet and Viola, 1997). In this pa-
per we will show that it can be used to perform tex-
ture recognition on both homogeneous textures and
more complex textures, which contain multiple types
of non-local visual structures. We will also demon-
strate that this technique can be used to solve diffi-
cult real problems in the analysis of synthetic aper-
ture radar (SAR) images. Because of the physics of
the imaging process, these images challenge classical
vision approaches because there is no region of the
image which is not textured.

2 The Non-parametric Multi-scale Statis-
tical Model

The multiresolution wavelet transform is most ef-
ficiently computed as an iterative convolution us-
ing a bank of filters. First a “pyramid” of low fre-
quency downsampled images is created: G0 = I , G1 =
2 ↓(g⊗G0), and Gi+1 = 2 ↓(g⊗Gi), where 2 ↓ down-
samples an image by a factor of 2 in each dimension
and g is a low pass filter. At each level a series of filter
functions are applied: Fi

j = fi ⊗Gj , where the fi ’s are
compact band-pass filters. Computation of the Fi

j ’s is
a linear transformation that can thought of as a sin-
gle matrix W. With careful selection of g and fi this
matrix can be constructed so that W−1 = W> (Mallat,
1989; Simoncelli et al., 1992) 2.

For every pixel in an image define the parent vector

1This assumption of independence has also been challenged in
the recent work of (Zhu, Wu and Mumford, 1996; Buccigrossi and
Simoncelli, 1997).

2Computation of the inverse wavelet transform is algorithmi-
cally similar to the computation of the forward wavelet transform.

of that pixel:
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where M is the top level of the pyramid and N is the
number of features. Rather than generating each of
these coefficients independently, we define a chain
across scale. In this chain the generation of the lower
levels depend on the higher levels:

p(~V(x,y)) = p(~VM(x,y)) × p(~VM−1(x,y)|~VM(x,y)) ×
p(~VM−2(x,y)|~VM−1(x,y),~VM(x,y)) × . . .×

p(~V0(x,y)|~V1(x,y), . . . ,~VM−1(x,y),~VM(x,y)) (2)

where~Vl (x,y) is the a subset of the elements of~V(x,y)
computed from Gl . Usually we will assume that tex-
tures are ergodic processes, i.e. that p(~V(x,y)) is inde-
pendent of x and y. This assumption is critical if we
are to observe enough data to estimate this distribu-
tion.

It is important to note that this probabilistic model
is not made up of a collection of independent chains,
one for each ~V(x,y). Parent vectors for neighboring
pixels have substantial overlap as coefficients in the
higher pyramid levels (which are lower resolution)
are shared by neighboring pixels at lower pyramid
levels. Thus, the generation of nearby pixels will be
strongly dependent. In a related approach a similar
arrangement of generative chains has been termed a
Markov tree (Basseville et al., 1992).

In previous work we have demonstrated that tex-
tures generated by sampling from the above distri-
bution are of very high quality. The samples are
perceptually indistinguishable from the original im-
age, while simultaneously exhibiting many varia-
tions which are characteristic of the source texture
class.

2.1 Estimating the Conditional Distributions
The additional descriptive power of our model

does not come without cost. The conditional distri-
butions that appear in equation (2) must be estimated
from observations. We do this directly from the data
in a non-parametric fashion. Given a sample of par-

ent vectors
{
~S(x,y)

}
from an example image we esti-

mate the conditional distribution as a ratio of Parzen



window density estimators:

p(~Vl (x,y)|~VM
l+1(x,y)) =

p(~VM
l (x,y))

p(~VM
l+1(x,y))

≈ ∑x′,y′ R(~VM
l (x,y),~SM

l (x′,y′))

∑x′ ,y′R(~VM
l+1(x,y),~SM

l+1(x′,y′))
(3)

where ~Vk
l (x,y) is a subset of the parent vector ~V(x,y)

that contains information from level l to level k, and
R(·) is a function of two vectors that returns maxi-
mal values when the vectors are similar and smaller
values when the vectors are dissimilar. We have ex-
plored various R(·) functions. In the results presented
the R(·) function returns a fixed constant 1/z if all of
the coefficients of the vectors are within some thresh-
old θ and zero otherwise.

2.1.1 Incorporating multiple model images

With little modification information from multiple
examples of the target texture can be incorporated
into the density estimator. When multiple images are
available the Parzen conditional distributions (equa-
tion (3)) can be constructed using the additional par-
ent vectors observed from these images.

3 Texture Comparison Using Cross En-
tropy

Texture recognition requires that we evaluate
which of several texture classes is most likely to have
generated a test image. One natural approach is to
construct one probabilistic model for each texture
class. New images are then classified, using equa-
tion (2) and Bayes’ Law to find the model which
makes the image most likely. Experiments have
shown that this approach works well, but it is not sig-
nificantly better than many published techniques.

If we were to take the view that each texture
as a single sample from a probability distribution,
the simple Bayesian approach would be the optimal
strategy. However, this contradicts our above as-
sumption that textures are in fact ergodic – an as-
sumption that is necessary if we hope to learn the
cross-scale conditional distributions from a single
texture. In doing so, we have assumed that a texture
is not a single sample from a distribution, but is ac-
tually many samples from a spatially ergodic distribu-
tion. When this is true the direct Bayesian approach is
no longer valid, and a more robust method is needed.

Here is a simple example which illustrates why
this is so: consider a process which creates random
binary images by flipping a single biased coin such
that a pixel is colored white with an independent

probability of 0.75. Suppose you were asked to de-
cide which of two images is more likely to have been
generated by this process: the first has 75 white pix-
els and 25 black ones; the second image has 100 white
pixels (and 0 black). Intuitively, it seems more likely
that the first image was generated by this process.
But if we treat each image as single sample from
a joint distribution the probabilities indicate other-
wise. The probability of generating the first image is
much lower than that of the all white image (roughly
3×10−25 compared to roughly 3×10−13). Why does
this approach fail to pick out the correct image? It
does not take into account that the overwhelming
majority of samples which are generated by this pro-
cess will have about 75 white pixels. While it is true
that the first image is more likely than the second, it is
much less typical. Formally, typical images are those
whose entropy is approximately the same as the en-
tropy of the class to which they belong. The fact that
most images are typical is known as the Asymptotic
Equipartition Property (Cover and Thomas, 1991).

A better way to decide which of these two im-
ages was generated by the above process is to mea-
sure which is more typical. This is done using the
Kullback-Liebler (KL) divergence or cross-entropy3.
The cross-entropy is a measure of the difference be-
tween two distributions:

D(p||q) =
Z

p(x)log
p(x)
q(x)

(4)

=
Z

p(x) logp(x)−
Z

p(x) logq(x) (5)

= −H(p)−
Z

p(x) logq(x). (6)

It can be viewed as the difference between two ex-
pected log likelihoods: the log likelihood of samples
of p(x) under the distribution p(x), and the log like-
lihood of samples of p(x) under q(x). For the first
image we estimate the probability of white pixels
to be p = 0.75. For the second image set we esti-
mate p = 1.0. The true probability of a white pixel
is q = 0.75. The cross-entropy between p = 1.0 and
q = 0.75 is 0.28, while the cross-entropy between the
p = 0.75and q = 0.75 is 0.0, a perfect fit.

We use cross-entropy to measure the difference be-
tween a texture distribution and the observed distri-
bution in a test image. Given an example image IE
we can estimate a model probability distribution PE()
using the Parzen density estimator described above.
From a test image IT we estimate PT(). By replacing
the integration above with a monte-carlo sampling

3Cross entropy is not symmetric and is therefore not a metric.



the following approximation results:

D(IE||IT)≈

∑
x,y

 log
[
∑x′,y′ R(~VE(x,y),~VE(x′,y′))

]
−log

[
∑x′ ,y′R(~VE(x,y),~VT(x′,y′))

]  (7)

where Vi(x,y) is the parent vector from image Ii at lo-
cation (x,y). In equation (7) we have used the Parzen
estimator derived from IE to both approximate the
entropy of IE and the cross-likelihood of IT .

The cross-entropy compares the ability of the
model distribution to explain the image from which
is was derived (IE) to its ability to explain the test im-
age (IT ).

In some of the experiments below we classify tex-
tures into one of two classes. By selecting the model
with the lowest cross-entropy we minimize the prob-
ability of incorrect classification. But in real appli-
cations we may not wish to simply minimize total
misclassification. Instead, we may wish to lower ei-
ther the number of false-positives or false-negatives.
In this case a threshold, η, is compared to the dif-
ferences between the cross-entropies. By manipulat-
ing η, false-positive errors are traded off with false-
negative errors. The curve generated by varying
η, known as the receiver operating characteristics
(ROC) curve, will be shown for several of the experi-
ments described below.

4 Experiments
4.1 Standardized tests

On “easy” data sets, such as the MeasTex Brodatz
texture test suite, performance is slightly higher than
other techniques, our approach achieved 100%cor-
rect classification compared to 97% achieved by a
GMRF approach (Brodatz, 1966; Smith and Lovell,
1995; Chellappa and Chatterjee, 1985). However,
it is unlikely that this result is statistically signifi-
cant. On the MeasTex lattice test suite, which
contains textures which are highly non-Gaussian, our
approach achieved 96% correct classification while
a Gabor Convolution Energy method achieved 89%
and GMRF’s achieve only 79%(Fogel and Sagi, 1989).
However, because performance is so close to perfect
on these relatively easy tasks it is difficult to get an
accurate estimate of the relative performance of the
current system.
4.2 Natural textures

To measure performance on far more difficult tex-
tures, we collected a set of 20 types of natural texture
and compared the classification power of this model
to that of human observers (humans discriminate tex-
tures extremely accurately.) Examples of each texture
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Figure 1: (a) Two images which contain the same tex-
ture. (b) Images which contain different textures. (c)
ROC classification curves for human observers (top)
and for the current model (bottom).

were acquired by extraction of image patches from
a single image of a roughly texturally homogeneous
natural scene.

An example of two images of the same texture are
shown in Figure 1 (a), and of several textures are
shown in (b). In this dataset, some images in the same
class look very different, and some in different classes
look similar.

Three ROC curves are shown in Figure 1. For each
curve, probability of correctly identifying each tar-
get texture, P(detection), is plotted against probability
of misclassification P( f alse− alarm). A curve which
passes through (0,1) indicates perfect performance,
while a diagonal line from (0,0) to (1,1) indicates
chance.

The top curve, which achieved the best perfor-
mance, was generated by the averaged results for 7
human observers. The middle curve was generated
by the current model, which does not perform as well
as human observers, but is substantially better than



Figure 2: TOP: 128×128SAR images of (a) T72 tanks,
(b) BMP2 personnel carriers, and (c) clutter images
which contain no vehicles. BOTTOM: ROC curve
for discriminating full resolution (128× 128) T72, or
BMP2 vehicles from clutter images.

GMRFs which generate the bottom curve. The maxi-
mum likelihood decision classification yields 93%ac-
curacy for human observers, 87% for current model,
and 75%for GMRFs (chance = 5%.)

4.3 Vehicle detection in SAR data
In this section we present the preliminary results

of using this model for vehicle detection in synthetic
aperture radar images. Using a model constructed
from four SAR images of a particular vehicle type, we
classify a data set consisting of three types of images:
images of the target vehicle, images of a second ve-
hicle, and clutter images which contain no vehicles.
The data was acquired from the Model Based Vision
Lab MSTAR data set (Model Based Vision Lab, ). In
each class there were 140 images; two examples of
each are shown in Figure 2. The target vehicle was a
T72 tank (a), distractor images consisted of images of
a BMP2 personnel carrier (b), and clutter images (c).

Using this data set we ask two questions: how well
can we discriminate between images containing clut-
ter and those containing a vehicle; and how well can
we discriminate between vehicle types, given only
models of one, or both of them.

The ROC plot on the right of Figure 2 shows the
performance of the current technique at discrimi-

Figure 3: By searching over ηclassi f ythe maximum ac-
curacy achievable by the system can be found.

nating between clutter images and images contain-
ing either vehicle type, given two model images of
only the T72. The point 100% detected versus 0%
false-alarm is reached indicating that at some thresh-
old, perfect performance, over this limited data set,
is achieved. However, this measure is only pre-
liminary; in real applications the the maximum ac-
ceptable P(false-alarm), (Neyman-Pearson criterion)
is below the ±∼ 1%precision of these experiments.
4.4 SAR vehicle classification system

We now turn to the question of discriminating be-
tween the T72 and BMP2 vehicles. Using just exam-
ples of one vehicle type, only 67%of the vehicles are
correctly classified. By combining the information
provided by both pairs of model images performance
can be improved.

To determine whether a test image is more likely to
have been generated by one model than by the other
we take the difference of the cross-entropy measures
we can obtain a new measure: Lclassi f y= D(IE1||IT)−
D(IE2||IT) To remove biases we compare Lclassi f y to a
threshold ηclassi f yusing a binary decision rule:

Lclassi f y

class 1
>
<

class 2
ηclassi f y (8)

By varying the value chosen for ηclassi f ywe can max-
imize the accuracy obtained by the system.

The left plot of Figure 3 is the accuracy achieved by
the system as a function of the threshold. In the right,
the output of the classification system is shown for
the two types of images. The top curve are the sorted
responses to the T72, and the bottom to the BMP24

4When performing classification, of course, the system does not
have access to these labels, as finding them is the objective!



From the peak on the left plot, we see that the max-
imum accuracy obtained is 78%. At this point, we
find the maximum-accuracy threshold value ηclassi f y,
which produces a linear discriminator shown by the
horizontal line; on the right plot, all images which
fall below the line are classified as BMP2, and those
above as T72.

5 Discussion
In this paper we have described a new texture

model which is based upon coarse to fine scale
conditional distributions that are estimated non-
parametrically from example images. By captur-
ing the joint cross-resolution characteristics of the
wavelet distribution it can model long-scale visual
characteristics, such as lines, edges, and complex
structures. Further, by building the distribution in a
non-parametric fashion, it can be complex and multi-
modal, allowing it to simultaneously capture differ-
ent types of local structure.

In earlier work we showed how textures could
be synthesized from such a distribution (De Bonet,
1997). Here we show how to use these distribu-
tions to measure the cross-entropy between texture
images.

In tests of discrimination using simple texture sets,
performance is slightly better than standard tech-
niques such as GMRFs. Experiments with more dif-
ficult textures indicate performance which, though
less than that achievable by human observers, is sig-
nificantly better than GMRFs. We have tested this
model on a real-world problem of the classification
of synthetic aperture radar imagery. Though SAR
classification rates shown here are only preliminary,
more experiments are underway and these results are
promising.
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