
Data Compression Techniques for Branch Prediction

Jeremy S. De Bonet

Artificial Intelligence Laboratory
Learning & Vision Group

545 Technology Square Massachusetts Institute of Technology
Cambridge, MA 02139

jsd@ai.mit.edu
http://www.ai.mit.edu/people/jsd

June 9, 1999

Abstract

Without special handling branch instructions would
disrupt the smooth flow of instructions into the mi-
croprocessor pipeline. To eliminate this disruption,
many modern systems attempt to predict the out-
come of branch instructions, and use this prediction
to fetch, decode and even evaluate future instruc-
tions. Recently, researchers have realized that the
task of branch prediction for processor optimization
is similar to the task of symbol prediction for data
compression. Substantial progress has been made
in developing approximations to asymptotically op-
timal compression methods, while respecting the
limited resources available within the instruction
prefetching phase of the processor pipeline. Not
only does the infusion of data compression ideas
result in a theoretical fortification of branch pre-
diction, it results in real and significant empirical
improvement in performance, as well. We present
an overview of branch prediction, beginning with
early techniques through more recent data compres-
sion inspired schemes. A new approach is described
which uses a non-parametric probability density es-
timator similar to the LZ77 compression scheme
[23]. Results are presented comparing the branch
prediction accuracy of several schemes with those
achieved by our new approach.

1 Introduction

The accurate prediction of the outcome of branch
instructions is a critical component for achiev-
ing high performance for many of today’s modern

processors. Branch instructions can conditionally
change the path a program will take, thereby dis-
rupting the smooth flow of instructions which is
necessary for finding instruction level parallelism,
and fully exploiting the acceleration afforded by
pipelining. When a conditional branch is encoun-
tered there is a delay before the direction of the
branch is determined, this causes a disruption in
the flow of instructions into the pipeline. To elim-
inate this disruption, many modern systems at-
tempt to predict the outcome of branch instruc-
tions. This prediction is used to begin the pro-
cess of fetching future instructions and memory. In
some cases instructions can even be executed and
their results cached before the outcome of the ear-
lier branch has been determined (commonly known
as speculative execution). When the outcomes of
branches are predicted correctly computation can
continue seamlessly, as future instructions are fed
into the pipeline. When predictions are incorrect
however, a large performance hit is incurred in or-
der to flush both the pipeline and cached specula-
tive results. Furthermore, it is generally true that
the more computation done in advance of deter-
mination of the real branch outcome, the larger
the cost of purging partially executed instructions
and reinitiating computation along the correct path
[19]. Increasing prediction accuracy is necessary to
acquire a greater computational speed from longer
and increasingly intricate pipelines, instruction re-
ordering schemes, and speculative execution.

Initial work on branch prediction focused on the
prediction of direct conditional branches. These
branch instructions are either ‘taken’, resulting

1



in execution beginning at the target address, or
‘not taken’, in which case, execution continues at
the next instruction. This early work was empir-
ically driven and used computational mechanisms
of limited complexity to mimic simple intuitions
about program flow. We review some of this work
here.

More recently, a connection between branch pre-
diction and data compression was realized [1]. Pre-
dicting a branch outcome given knowledge of a pro-
gram’s past behavior is essentially the same prob-
lem as predicting a symbol given the preceding se-
quence of symbols. Accurate symbol prediction re-
quires the ability to estimate the probability dis-
tribution over future symbols, which is the funda-
mental problem in data compression. Substantial
progress has been made in developing branch pre-
diction schemes that approximate asymptotically
optimal compression methods, while respecting the
limited resources available within the instruction-
prefetching phase of the processor pipeline. Not
only did the infusion of data compression ideas re-
sult in a theoretical fortification of branch predic-
tion, there was a real and significant empirical im-
provement in performance, as well.

Here we will discuss data compression inspired
methods that achieve very high levels of prediction
accuracy. While these methods do not yet achieve
optimal performance, they are certainly closing in
on this goal. It is important to note that optimal
performance is not perfect performance. This is
because while a system may make optimal use of
all information available to it at prediction time,
there are cases in which the outcome cannot be
determined beforehand because the program is op-
erating on unknown data. This deviation between
optimal prediction and perfect prediction, while ex-
tremely difficult to quantify, can be thought of as
the entropy of a program and its data.

More recently branch prediction research has
shifted from direct conditional branches, which
have two outcomes (one if ‘taken’, one if
‘not taken’), to indirect branches which can have
multiple outcomes. For indirect branches the
branch target (the address at which execution will
continue after the branch) is determined by the con-
tent of a register and/or memory location1. Pre-
dicting the outcome of a branch when it has mul-
tiple possible targets is more difficult than when
there are only two possible outcomes. This is
clearly true in light of the observation that mul-

1In some cases the indirection is an offset from an address
specified by the branch argument, in others the indirection
specifies an absolute address.

tiple target branches are a generalization of the
simpler two-outcome case. In the domain of indi-
rect branches, solutions based on data compression
techniques have also proven successful over more
ad hoc methods. We will discuss the generaliza-
tion to multiple symbol alphabets data compres-
sion techniques, and potential hardware implemen-
tations which approximate these algorithms while
observing real world constraints.

2 Early Work on Branch Pre-
diction: Smith 1981

In his seminal 1981 paper on branch prediction [19],
James Smith describes a series of branch predic-
tion schemes that increase in complexity and per-
formance. One of the major contributions of this
work is that it enumerates each scheme – many of
which are simple, and perhaps obvious – and eval-
uates and compares their relative performances.

In this work a distinction is made between static
and dynamic branch prediction schemes. Static
schemes are those which make predictions solely
based upon the structure of the program code.
Dynamic strategies adjust their predictions based
upon flow of the program preceding the branch.
In later works this distinction is irrelevant because
static schemes are vastly outperformed by dynamic
ones, and are therefore no longer the main fo-
cus2. Nevertheless it is important to evaluate such
schemes at least once to measure the performance
that they can achieve. This provides a baseline
level of performance against which other schemes
can be compared. Additionally, performance dif-
ferences between various static techniques can iden-
tify predictors (contextual clues which help make a
prediction) which can be combined with dynamic
techniques.

Most early work only considered direct condi-
tional branches, which are either ‘taken’, result-
ing in processing beginning at new address, or
‘not taken’, in which case processing continues at
the next instruction.

2.1 Scheme: Predict all branches
taken (or not taken)

The simplest prediction scheme is one in which all
branches are predicted ‘taken’; of course, an equiv-
alently simple scheme is to assume ‘not taken’ for

2However, static schemes are still used in combination
with dynamic schemes to “seed” in early stages before suffi-
cient data has been collected.



all branches. The prediction accuracy of these tech-
niques do two things. First they provide a baseline
performance measure; any newly proposed scheme
had better outperform them. Second they illus-
trate the variability of the distributions of branch
outcomes across different programs. Prediction ac-
curacy varied from 57.4% to 99.4% for the programs
Smith tested. While Smith does not discuss these
results in an information theoretic framework, the
accuracy of (the better of) these two techniques is
a direct measure of the zero-th order entropy of a
programs branch outcomes3 This scheme is static
as it does not vary during the execution of the pro-
gram.

2.2 Scheme: Predict branches with
certain opcodes taken

A second static scheme predicts that branches with
certain operation codes (opcodes) will be taken,
and that branches with other opcodes will not be
taken. This branch prediction technique has been
used in some IBM 360/370 models. For most of the
tested programs performance improved, in some
cases by as much as 33%; however, in two cases
performance decreased by as much as 14%. This
scheme can be though of as a measure of the first
order entropy of branches measured with respect to
their associated opcode.

2.3 Scheme: Predict backward
branches taken

Another static strategy is to predict that all
branches whose target address is lower (i.e. back-
ward branches) will be taken; forward branches are
assumed to be ‘not taken’. This method is designed
to capture the intuition that ‘while’ loops are termi-
nated with backward branches and make up a large
fraction of the branches encountered. While it may
be true that ‘while’ loops have a skewed distribu-
tion, it is unclear why non-loop branches preferen-
tially not be taken. Only in this case should this
approach be better than the ”predict all branches
taken” scheme. For all but one tested program this
seems to be true, however, the author offers no ex-
planation as to why this might be the case. Perfor-
mance with this technique is a measure of the first
order entropy of branches measured with respect

3In actuality, for all programs tested, predicting that all
branches ‘not taken’ was better than predicting ‘taken’. This
is probably due to looping constructs in which a branch con-
tinually falls through until loop termination. However, this
bias may not be the case for all programs.

to their target direction. This scheme is used as
the fall-back prediction method (used when more
sophisticated methods are inapplicable) in the In-
tel Pentium, Pentium II and Pentium III line of
processors [7].

2.4 Scheme: Predict branch not
taken when in table

This scheme represents the simplest dynamic pre-
diction strategy. The idea is to maintain a table of
the most recently evaluated branches which were
‘not taken’. If a branch is in the table when it is
encountered a prediction is made that the branch is
not taken. If the prediction is wrong, the branch is
removed from the table. If the encountered branch
is not in the table, branch is predicted to be ‘taken’.
If wrong, the branch is added to the table by replac-
ing the least recently used entry (thus maintaining
a constant table size). This scheme is termed ‘dy-
namic’ because the branching history of the run-
ning program is used to change the prediction of
future branches. Performance of this method in-
creases with increasing table size, as a history bit
can be maintained for successively more branches.
A scheme like this is used by the DEC Alpha 21064
[9].

In the limit of an infinite table, there is a one-bit
history for every branch, and this technique can be
thought of as a measure of the entropy of a branch
given its last outcome. While Smith does not dis-
cuss his models in terms of data compression we
can begin to draw similarities to probability den-
sity modeling methods used in data compression
and other areas. This model can be thought of as a
two-state Markov chain with a probability of only
0 or 1 at each node.

With even a modest table size of four addresses
performance of this technique is substantially bet-
ter (as much as 30%) for many of the tested pro-
grams, with only very small (less than 5%) perfor-
mance losses for others.

Smith discusses several potential physical instan-
tiations of this algorithm: using associative mem-
ory; using a fixed table that is kept for only those
instructions in the instruction cache; and using
a hash table. There are only slight performance
tradeoffs between each instantiation, they are dis-
tinctive principally in the hardware complexity re-
quired to implement them.



2.5 Scheme: Predict branch using a
table of 2-bit counters

The final prediction scheme described by Smith is
computationally only a small step from the pre-
ceding algorithm; however statistically, this scheme
can be viewed as a true probability estimator. The
notion in this scheme is to maintain a table con-
taining the m most recently encountered branches.
For each branch entry in the table, keep a two bit
saturating counter. Each time a branch in the ta-
ble is visited, predict the branch using the value of
the counter. A counter value of 00, or 01 results
in a prediction of ‘not taken’, and 10 or 11 yields a
prediction of branch ‘taken’4 Regardless of the va-
lidity of the prediction, the table is updated in the
same way: if the branch was not taken, the counter
associated with the branch is decremented, if it was
taken, the counter is incremented. The counter is
not decremented below 00 or incremented above
11, and hence is termed ‘saturating’. Several pro-
cessors use this scheme: Intel Pentium processor
[7], MIPS R10000 [13], Sun UltraSPARC [20] and
the DEC Alpha 21164 [9].

While Smith does not discuss these algorithms
in terms of statistical representations, each counter
can be viewed as a 2-bit estimator of the probability
that a branch will be ‘taken’. The prediction in this
case corresponds to choosing the maximum likeli-
hood (ML) estimate from this distribution. This
prediction scheme results in the highest prediction
accuracy of all the schemes and for all of the pro-
grams that Smith examined. The substantial and
consistent improvement in prediction accuracy can
be explained by the improvement in the estimation
of the “true” branching probability.

The obvious question then becomes, “what about
using counters larger than 2-bits?” Smith showed
that with additional counter bits performance in
some cases actually diminishes. Smith provides a
fairly weak argument in which he attributes this
decline in performance to “the ‘inertia’ that can
be build up with a larger counter in which his-
tory in the too-distant past is used.” When viewed
within a probabilistic framework, this effect can be
explained in terms of the lack of stationarity of the
branching distribution. A 2-bit estimator which is
completely determined by the last four branches,
while only able to provide rough approximation, is

4Smith actually views the counter as a one bit signed
number using a two’s complement implementation. In this
representation 00 and 01 are positive, and predict branch
‘taken’, and 10 and 11 predict ‘not taken’. We change the
enumeration here to emphasize the similarity to a probabil-
ity estimator.

better able to adjust to the changes in the branch-
ing probability distribution. This observation sug-
gests some improvements over this scheme, which
will be discussed later.

3 Predictor Combination:
McFarling 1993

In any field where multiple competing approaches
each meet with reasonable success, there is the po-
tential to achieve better results by using the ap-
proaches in combination. The technique of com-
bining multiple methods is common to many fields,
for example it is known as “boosting” in machine
learning [17, 8] and “mixture modeling” in statisti-
cal modeling [5].

A 1993 technical report by McFarling [12] at-
tempted to achieve a boost in branch prediction
accuracy by combining three of the best known ap-
proaches. The first technique, termed “bimodal”
by McFarling, is essentially the same as the method
of predicting branches using a table of 2-bit coun-
ters described in [19]. The other two techniques,
both due to Yeh and Patt [22], make use of several
past branch outcomes to predict future outcomes.
The two schemes, while similar, can be classified
into local and global, and are outlined below.

3.1 Scheme: Predict using the re-
cent history of each branch

This scheme is designed to use the last n outcomes
of a particular branch as a predictor for future out-
comes. Each branch is predicted using only its own
branch outcome history, which is maintained sepa-
rately. This method is therefore termed local. As
in the previous scheme, information is accumulated
for the most recently executed branches. For each
branch an n-bit list is kept containing a history of
that branch’s last n outcomes. In addition to the
branch histories, a table is maintained. The table
is indexed by the 2n possible branch patterns which
can occur within a recent history of n branches. For
each of the 2n entries in this table, a 2-bit counter is
maintained. Prediction is straightforward. When a
branch is reached, its current recent history is used
to index into the table, and a 2-bit counter is ob-
tained. This counter is used to make a prediction
in the same way as in the previous scheme. Each
counter is then updated with the actual outcome
of the branch using the same method described for
the scheme above.



Performance of this scheme is significantly better
than that of the previous scheme when the number
of recent branches maintained is sufficiently large5.
Histories of between 2 and 12 outcomes were main-
tained for each branch, with little improvement in
performance beyond maintaining a history of 6 out-
comes.

The intuition which served as the motivation for
creating these techniques was that “many branches
execute repetitive patterns.” In a more information
theoretic sense, we can think of this scheme as a
measure of the entropy of the branches with respect
to their recent history. In fact this scheme, which
was constructed in an unprincipled fashion turns
out to be a coarse approximation of the method
of prediction by partial matching (PPM) method
described in 1984 in [2] and developed later in [14];
however, this observation was not made until 1996
[1], which will be discussed later.

3.2 Scheme: Predict using the re-
cent history of all branches

The global version of the above scheme is essentially
the same, except that a single global history, and
a single history-indexed table is maintained. This
global history is then used to index into the table
of 2n counters associated with each of the possible
histories of length n.

Performance of this scheme is significantly worse
than the local scheme; however, with sufficiently
large table sizes (1,024 bytes) it does outperform
the “bimodal” approach introduced by [19]. The
success of this approach can be attributed to its
ability to leverage correlations in outcomes be-
tween various branches. Additionally, as McFarling
points out, with sufficiently large histories, outcome
patterns emerge which can uniquely identify vari-
ous branches, and can therefore begin to leverage
some of the individual history prediction of the lo-
cal scheme.

3.3 Scheme: Predict using global
history and local address

McFarling is able to combine some of the benefits of
the global and local schemes by a method of com-
bining global history and branch address to create
an index into a pattern table. This synthesis was

5McFarling does not indicate how many branches were
maintained however, when the total storage size approaches
128 bytes this scheme begins to outperform the previous one.
With the largest tested configuration this scheme resulted in
half as may mispredictions.

attempted in two ways. The first approach uses
simple concatenation of the global history and the
least significant bits of the branch address. The sec-
ond approach builds a hash index from the global
history and the branch address by XORing them
together. The boost in performance observed in
[12] is relatively minor.

4 Data Compression Tech-
niques Applied to Branch
Prediction: Chen et al.
1996

We have been drawing connections between
branch prediction and data compression techniques
throughout this paper, but this connection was only
first formally realized in 1996 by Chen et al. in [1].
Chen et al. observed that many of the best known
branch prediction schemes – schemes which were
conceived through heuristic methods and refined
using empirical measurements – could be viewed as
approximations of the prediction by partial match-
ing algorithm.

4.1 Scheme: Prediction in data com-
pression

PPM is an algorithm designed for data compres-
sion. Like most compression algorithms, it oper-
ates by modeling the probability distribution over
the next symbol in a sequence conditioned on infor-
mation obtained from previously received symbols.
Typically this conditional distribution is lower in
entropy than the zero-th order entropy of the sym-
bols in the sequence. Because of this reduction in
entropy, the number of bits required to code the
next symbol conditioned on this distribution is (on
average) lower than the cost of coding this symbol
unconditionally. This is the fundamental observa-
tion, due to Shannon [18], upon which all source
coding (data compression) is based6

4.2 Prediction by Partial Matching

The fundamental innovation in the PPM method is
the particular probability density estimator used.
The name of this technique, “Prediction by Partial
Matching”, gives some indication of how it works.
In PPM a match of all or part of the symbol history
is used to compute the expected distribution over

6For a complete introduction to source coding see [4]



the next (unknown) symbol. The expected distri-
bution is computed by examining the entire symbol
history and locating all sequences of symbols that
match the sequence preceding the unknown sym-
bol. Each of these matching sequences is succeeded
by a symbol. The distribution of these succeeding
symbols form an estimate of the distribution for
the unknown symbol. In cases where there are no,
or very few, matches of the length n history, the
partial match required is then reduced to n − 1.
Smaller and smaller partial matches are used, un-
til a sufficient number of matches are found in the
symbol history to obtain a reasonable estimate of
the distribution of the next symbol.

4.2.1 PPM: An example.

Consider the sequence of symbols from a 4 letter
alphabet: ‘a b c b d a b c a b a b ?’ where ‘?’ is an
unknown symbol we want to predict or transmit.
Consider the operation of PPM of order 4 on this
sequence.

First, the length 4 history of the unknown sym-
bol is considered; however this sequence, ‘a b a b’,
does not occur anywhere else in the symbol history.
Next, a history of length 3 is considered, but this
sequence, ‘b a b’ also does not occur elsewhere in
the data. The partial match required is then re-
duced to two symbols: ‘a b’. This sequence occurs
three times earlier in the data, and is followed by
the symbols: ‘c’, ‘c’ and ‘a’. From this distribution
of symbols which have been observed to follow the
pattern ‘a b’ an estimate for the distribution over
the next symbol can be estimated. The estimate of
this is distribution is not as simple as 2/3 ‘c’ and
1/3 ‘a’ however. If we were to use such an esti-
mate, we would be attributing 0 probability mass
to symbols other than ‘c’ or ‘a’, and as a result
there would be no way to code the next symbol if
it were one of the other symbols (e.g. ‘b’ or ‘d’). To
correct for this, some probability mass must be re-
served as escape probability, indicating that none of
the observed matches in the past accurately pre-
dict the next symbol. Suppose we chose an es-
cape probability of ε. Our estimated distribution
for the next symbol would be P (‘a’) = 1/(3 + ε),
P (‘c’) = 2/(3 + ε) and P (escape) = ε/(3 + ε). This
distribution can then be used to generate a code
for the next symbol. Typically this is done with
arithmetic encoding, though other approaches can
be used.

Suppose the next symbol were not ‘a’ or ‘c’.
In such a case, the escape probability is then
coded. When an escape occurs a new distribu-

tion for the next symbol is estimated using a one
symbol shorter partial history match. In addition
to matching this shorter pattern it must also not
match the longer pattern. Continuing with our ex-
ample, a distribution is generated from the sym-
bols following partial matches of the pattern ‘b’:
‘c’, ‘d’, ‘c’ and ‘a’. However, only ‘d’ follows the
pattern ‘b’ but not the pattern ‘a b’. Giving us
an estimated distribution of: P (‘d’) = 1/(1 + ε)
and P (escape) = ε/(1 + ε). The next symbol is
then coded with this distribution. If an escape oc-
curs again, (i.e. if the symbol ‘b’ were to come
next) the next symbol is coded using the relative
frequencies of each symbol. If an escape occurs yet
again, which would happen if some never-before-
seen symbol (i.e. ‘e’) should occur, the symbols are
then coded using a uniform distribution.

Suppose the next symbol were ‘d’. This would be
coded by coding an ‘escape’ followed by the code for
the symbol ‘d’ given the probability P (‘d’) = 1/(1+
ε). The decoding process would be as follows: First
the decoder would realize that there are no length
4 matches (i.e. the sequence ‘a b a b’, has not been
observed before) at which point a length 3 match
would be tested. Again the coder would realize that
no length 3 match occurs (i.e. ‘b a b’ has never
occurred elsewhere) and testing move to a match
of length ‘2’. The distribution is then estimated,
exactly as was done above and the message ‘escape
is decoded. The effect of this escape is to drop down
to a length 1 partial match. Again a distribution is
estimated, and then the symbol ‘d’ is decoded and
inserted into the sequence.

Of course in actual implementations, it is not
necessary to continually revisit the transmitted
data to search for partial matches. Instead the
distribution of symbols which follow all partial
matches of any length can be maintained in a set of
tables. Using a principal of update exclusion only
the frequency counters which are considered for a
given pattern are updated. Thus, shorter patterns
only reflect the distribution of symbols that would
not be explained by longer pattern matches.

When described within the maintained table
framework, the similarity between the PPM algo-
rithm and the schemes proposed for branch pre-
diction becomes clear. The only three differences
between PPM and the ’Predict using the recent
branch history’ schemes presented above are:

• PPM is a scheme that generalizes to alpha-
bets of arbitrary size, while the branch predic-
tion schemes above are only binary predictors
(‘taken’ or ‘not taken’).



• PPM uses full counters to maintain probability
estimates, while the branch prediction schemes
use 2-bit saturating counters in order to ob-
serve realistic hardware limitations and

• PPM drops down to successively shorter con-
texts until a reasonable probability distribu-
tion can be estimated, while the branch predic-
tion schemes initialing their distributions with
simple a priori assumptions7.

The connection was only first described by Chen
et al. [1] in 1996. Not only did they illustrate
this connection, but in addition they showed that
a full PPM predictor outperforms the less princi-
pled history based schemes described above. Per-
formance gains were modest but consistent, achiev-
ing a roughly 25% decrease in misprediction rate.

In addition to demonstrating the performance
boost of full PPM over the schemes which were de-
vised in an ad hoc fashion and only approximate
PPM, Chen et al. also enumerate several predic-
tor and table configuration variations worth men-
tioning. Unfortunately performance measures are
not given for these variations, but they neverthe-
less serve to illustrate the modularity between the
prediction method and the features predicted.

In addition to the schemes described by McFar-
ling, in which histories were computed locally (i.e.
for each branch independently) or globally (i.e. all
branch outcomes in combination) and used to in-
dex into a single branch pattern table, Chen et al.
describe two schemes, one local and one global,
which maintain a pattern table individually for
each branch. Each of these four combinations (lo-
cal or global histories used to index into local or
global pattern tables) can be used with the simpler
single saturating counter method predictor, or can
be used with a PPM predictor. The strategy used
in the Intel Pentium II and Pentium III proces-
sors consists of local 4 outcome histories indexing
into local pattern tables containing 2-bit saturating
counters [7].

7McFarling mentions that initialization with a bias to-
ward ‘taken’ is used, however, one could imagine using one
of the static strategies described in [19] to initialize the coun-
ters/distribution. In fact, in the Intel Pentium, and Pentium
II and Pentium III processors, such static fall-back schemes
are used [7].

5 CTW, Adaptive CTW
and Adaptive PPM ap-
plied to Branch Prediction:
Federovsky et al. 1998

Inspired by the observation of the similarity be-
tween the prediction of branch outcomes and the
predictors used in data compression, Federovsky et
al. [6] extended the study begun by Chen et al.
[1]. In addition to examining the performance of
adaptive versions of the PPM algorithm, they also
consider static and adaptive versions of the con-
text tree weighting (CTW) algorithm introduced
by Willems et al. [21].

5.1 Scheme: Prediction using CTW
algorithm

The CTW algorithm is conceptually very similar
to the PPM algorithm, except that CTW uses an
unbiased probability density estimate. Given a
history match which is followed by a zeros and
b ones, PPM estimates the probability that the
next symbol xi conditioned on the past n symbols
xi−1 . . . xi−n with:

PPPM(xi|xi−1 . . . xi−n) =
b

a+ b
(1)

Given a history which is followed by a zeros and
b ones, CTW estimates the probability of the next
symbol x with the Krichevsky-Trofimov (KT) esti-
mate [21]:

Pe(a, b) =
∫ 1

0

1√
(1− θ)θ

(1− θ)aθbdθ (2)

Consider an n depth binary tree in which each
path from the root to a leaf represents one possible
branch history. The path from each node in the
tree to the root identifies a partial history of length
less than or equal to n. In the case of PPM, we can
think of each of these nodes as the lower length con-
texts which are visited when a full length n match
cannot be found. Using such a tree for PPM would
require storing the count of branches ‘not taken’,
a, and ‘taken’, b, for those branches whose partial
history, s, matches the path from the tree root to
that node. In CTW, instead of simply storing the
outcomes of the branches a weighted probability is
stored. This weighted probability is defined recur-
sively in the tree, where each weight is a function
of its probability and the weights of its children:

P sw =
1
2
Pe(as, bs) +

1
2
P 0s
w PPw 1s (3)



At the leaves of the tree:

P sw = Pe(as, bs) (4)

The KT-estimator can be computed sequentially
using the following relation:

Pe(a+ 1, b) =
a+ 1

2

a+ b+ 1
Pe(a, b+ 1) (5)

This property allows for rapid updating of the
weights in the context tree.

The key difference between CTW and PPM is
that in CTW, predictions from all partial history
matches of all lengths (less than n) are combined to
form a single estimate while in PPM only predic-
tions from the longest satisfactory match are used.

The predictions throughout the context tree are
combined to form a single probability distribution
over the next symbol. The weighted probabil-
ity of all possible complete subtrees is given by
Pλw(x1 . . . xi) which is the weight in the root node
of the context tree. Thus to determine the proba-
bility that the next symbol is a 1, i.e. that the next
branch is ‘taken’, a new root weight P

′λ
w (·) is com-

puted under the hypothesis that the next branch is
‘taken’. A prediction is made in the following way:

Pλw
P ′λw


> .5 + 1/

√
n → taken

< .5− 1/
√
n → not taken

otherwise → taken with
probability Φ(P )

(6)
where:

Φ(P ) =
Pλw

P ′λw − .5− 1/
√

(n)
2/
√

(n) (7)

It is not clear from [6] why a randomized predic-
tor is used. Furthermore, it seems that a better way
to determine the most likely branch outcome is to
compare P

′λ
w to P

′′λ
w where P

′′λ
w is the weight of the

root node after assuming that the next branch was
‘not taken’. This solution may not be used however,
because of the additional cost required to update
the tree for both the ‘taken’ and the ‘not taken’
hypotheses.

The prediction accuracy of the PPM and CTW
algorithms were essentially identical. This suggests
that the additional conceptual and computational
complexity of the CTW algorithm is unwarranted.
However, the fact that a compression algorithm
which was conceived of completely independently
of the branch prediction problem can be applied to
this domain and achieve state-of-the-art levels of

performance is encouraging. Perhaps other com-
pression techniques can also be applied with as
much or more success. In section 7.1 we suggest
a technique which is similar to the LZ77 compres-
sion algorithm.

5.2 Scheme: Adaptive PPM and
CTW

Federovsky et al. propose adaptive versions of the
PPM and CTW algorithm. They are adaptive in
that they build their internal probability models
use only data from a limited window of branch his-
tory. While they do not mention why this may be a
good idea in the body of the paper, in their abstract
they suggest that adaptive algorithms may better
match “the non-stationary nature of the branch se-
quence” [6]. This represents a large conceptual shift
from the ideas of Smith, who said, when explain-
ing why longer counters are not as good as 2-bit
counters, “this [performance decrease] is partially
attributed to the ‘inertia’ that can be built up with
a larger counter in which history in the too-distant
past is used”. Federovsky et al. have really made
the connection between a branch outcome sequence
and a series of samples from drawn from a branch
distribution. When doing prediction, the important
issue is the accurate characterization of the distri-
bution.

To make implementing adaptive versions of PPM
and CTW feasible, Federovsky et al. suggest a
clever technique. The idea is to maintain a second
“shadow tree” which is of the same form as the
main tree, but is constructed with branch history
data which has been delayed by a fixed number of
branches. The values of the shadow tree can then
be used to remove the influence of older branches as
their age becomes larger than the delay. The length
of the delay between the main tree and shadow tree
is the effective length of the adaptation window.

Using adaptation windows of 25,000 branches,
[6] found that the adaptive methods yielded a 7%
performance improvement over their non-adaptive
counterparts. Curiously the data also seem to
indicate that performance continued to improve
through adaptation windows of 30,000 branches;
however, they did not present data for larger win-
dows. Trees are maintained for 28 hashed addresses
using histories of up to 14 branches. This indicates
that the maintained trees are only about 0.6% full8,
suggesting that while these techniques are reaching
new levels of performance, they may be dedicating

8There are 28 trees which contain 214 nodes, and
25000/(28 ∗ 214) ≈ .00596



vast resources which are primarily unused. There
may be ways of achieving these same levels of per-
formance with far smaller resource requirements, or
perhaps even better performance with a redistribu-
tion of the same resources.

Nevertheless, techniques based on data compres-
sion consistently yield accuracy of 90% or more
for predicting the outcome of conditional branches.
While there may still be room for some improve-
ment, the inherent branch entropy of the program
fundamentally limits prediction accuracy9 There
is only limited room for additional improvement
for predicting the outcome of conditional branches
which have only two possible outcomes; however,
predicting the behavior of indirect branches which
can have multiple outcomes is significantly more
difficult.

6 Using Data Compression
Methods to Predict Indirect
Branches: Kalamatianos &
Kaeli 1998

Initial work in predicting indirect branches followed
the same course as did early work on the prediction
of conditional branches: the ad hoc development of
pattern matching counter based methods. In [11],
however, a principled approach was taken, based
upon the PPM data compression scheme.

Our above description of the PPM presented the
algorithm in its general form of multiple size alpha-
bets. When applied to the prediction of two-way
conditional branches, a simplified binary version of
PPM was used. When applied to prediction of mul-
tiple outcome indirect branches the full generality
of PPM must be exploited.

Because the potential alphabet of branch targets
is huge, either 232 (32 bit addresses) or 264 (64 bit
addresses). A direct implementation of PPM on
this alphabet would require an enormous probabil-
ity table. Instead, Kalamatianos and Kaeli suggest
an approach in which they apply a hashing function
to the target addresses to effectively reduce the al-
phabet size. Hashing in this way has the effect of
merging sets of history patterns together. While
there is no theoretical justification for why such a
shortcut might be valid, empirical results seem to
indicate that hashing collisions do not significantly
diminish performance for sufficiently large tables.

9While branch entropy is immeasurable in practice, any
the branches within any program operating on non-static
data will have an entropy greater than zero.

However, this suggests that there might be a bet-
ter way to deal with the full alphabet of possible
target addresses.

The hashing technique used in [11] is described as
select-fold-shift-XOR-select (SFSXS). Essentially
the branch target addresses are reduced to a fixed
number of bits, k, by:

• The number of bits in each selected address
is reduced by folding which consists of XOR-
ing subsequences of length k or smaller bits
together.

• Multiple folded addresses are combined by
shifting each by a different amount and XOR-
ing them together.

• A PPM context (i.e. lookup index) is com-
puted by selecting a set of k bits from the com-
bined addresses.

The simplifications used in [11] are primarily mo-
tivated by realistic hardware restrictions; however,
there are several simplifications which seem both
unprincipled and unjustified.

The purpose of the SFSXS scheme is to hash the
recent target addresses into a smaller domain, but
SFSXS is only one of an enormous number of pos-
sible methods for doing this. No justification, the-
oretical or empirical, is given for why this method
might be better than any other.

The final selection in SFSXS scheme, which
chooses k of the shifted and XOR’d folded address
bits, mediates the influence of each address on the
outcome history. In [11] they suggest that select-
ing the first or last k bits is reasonable; however,
selecting bits in this way causes either the last or
first history target address to effect only one bit in
the final hashing key; while the addresses on the
other extreme (first or last) effect all k bits. Per-
haps a more reasonable scheme is to select k bit so
that each address has equal influence, or alterna-
tively select the bits so that there is an influence
fall off with increasing age. However this issue is
not addressed.

In addition to reducing the effective alphabet
size, the technique in [11] also uses a single bit
probability estimator, i.e. only the last outcome
is remembered and used as a prediction. Thus the
scheme can be described as follows: A target ad-
dress history is maintained for each branch. The
addresses in the history are hashed using the SF-
SXS scheme. The hashed addressed are used to
index into a local table containing of the target ad-
dress taken the last time the branch was reached
with a history hashing to the same value.



While this scheme is an exceedingly simple ver-
sion of PPM, they were nevertheless able to achieve
prediction accuracy of about 91%. The appar-
ent arbitrariness of many of the decisions within
this method suggest that a more systematic study
may be able to still yield significant improvements.
What [11] does illustrate, however, is that even
in the presence of significant simplifications, data
compression based techniques can yield highly ac-
curate branch predictions.

7 Non-Parametric Compres-
sion Techniques Applied
to Branch Prediction:
De Bonet 1999

History based indexing techniques – including the
ad hoc methods and both PPM and CTW – main-
tain tables which grow exponentially large with the
length of the history. This exponential growth
causes two problems. First, there is the obvi-
ous problem of memory constraints. As history
length or complexity increases, the resources avail-
able within the branch prediction circuitry are ex-
hausted quickly. The second problem, known as
“data scarcity”, is more subtle. While an exponen-
tial number of probabilities must be maintained,
data (branch outcomes) are only acquired linearly.
Sufficient data can be collected to “fill in the ta-
bles” in the case of the small tables which result
from the above restrictions; however, if the history
lengths were much longer, or the history elements
more complex, most table entries would never be
encountered. This is known as the “data scarcity”
problem, and while it does not necessarily reduce
the effectiveness of a technique (PPM and CTW ex-
plicitly handle data scarcity by shifting to simpler
contexts) it results in an exponentially increasing
fraction of the resources being unused. As a re-
sult, the techniques described here severely limit
the length and complexity of branch history.

Here we present a non-parametric approach to
branch prediction which does not attempt to main-
tain a table of probability estimates as do the ear-
lier approaches. Instead, earlier data is used di-
rectly as a density estimator. While the form of
the density estimation is reminiscent of the PPM
algorithm, the non-parametric nature of the pat-
tern matching system is similar to LZ77 compres-
sion algorithm due to Ziv and Lempel [23].

7.1 Scheme: Predict using branch
order matching (BOM)

Because we are not using a tabular method, we
are free to consider prediction contexts which con-
sist of strings of symbols from very large alphabets.
In this scheme, we consider the history of branch
addresses – not branch outcomes (i.e. ‘taken’, or
‘not taken’) – which occurred before the current
branch. In the current scheme a list is main-
tained consisting of the addresses of each encoun-
tered branch. As each branch is encountered, its
address is prepended to the list. To respect mem-
ory limitations, the list is kept to a fixed maximum
length by removing the oldest address on the list.
It is important to note that this list retains the ad-
dresses in the order that they are visited. If visited
multiple times, a branch address can appear in the
list in several places. For each branch in the list,
the outcome of the branch – ‘taken’ or ‘not taken’
– is stored as well. A prediction is made by ex-
amination of the list and no other supplementary
information is needed. The list can be considered
a string of symbols, s from the alphabet of possible
addresses A. Let xi be a substring which occurs
in s at position i; i.e. axib = s for some a, and
b, where |a| = i. Note that a < s and b = s and
|a|+ |xi|+ |b| = |s|.

Each substring of xi that matches the head of
the string contributes to the prediction of the out-
come. Let c be the length of a common prefix of
xi and s. The contribution of that substring, kci
is proportional to the square of the length divided
by the square of distance of the substring from the
head of the string. i.e.

kci =
c2

i2
(8)

At each substring of addresses xi a branch out-
come is also recorded in the history list. If the to-
tal contribution from matching ‘taken’ substrings
is greater than the contribution from matching
‘not taken’ substrings, the branch is predicted
‘taken’. If ‘not taken’ substrings have a largest total
contribution, a prediction of ‘not taken’ is made.

There are several characteristics of this scheme
worth highlighting. First, substring xi will yield no
contribution unless xi begins with the same branch
as does s, which is the branch for which a prediction
is needed.

Another important aspect, is that if a the longest
string match between xi and s is has length given
by

cmax =
∣∣∣∣argmax

y
{y = xi ∧ y = s}

∣∣∣∣ (9)



then substrings of all shorter lengths (i.e. x1
i

through xcmaxi ) also contribute to the prediction.
In this way information from all partial matches is
integrated into the probability estimation, this is
in distinct contrast to PPM which uses only the
longest match.

Finally, because the list of encountered branches
is ordered chronologically the age of a partial match
can be taken into account when determining its in-
fluence. This allows the scheme to deal with non-
stationary branching distributions.

7.2 Experiments

To measure the performance of this scheme rela-
tive to some of the others presented here, we im-
plemented each scheme within a software micro-
processor simulator. We modified the DLX simu-
lator, dlxsim, distributed with Hennessey and Pat-
terson’s “Computer Architecture: A Quantitative
Approach” [10].

While the distributed version of dlxsim does not
contain branch prediction, it can be added without
significantly modifying the DLX pipeline simula-
tion. Using the C language compiler dlxcc, which is
a modified GNU gcc, and which is distributed with
dlxsim, we were able to simulate branch prediction
performance on several C programs. Because the
dlxcc compiler was not distributed with standard
libraries, we were limited in the complexity of the
programs we could simulate.

Six programs were tested:

• SIEVE(150) - the Sieve of Eratosthenes
method for determining primes up to 150

• TOGGLE(30) - a simple program which tog-
gles between printing *’s and +’s, 30 times

• HPSORT(500) - a program that performs a
heap sort of 500 random numbers, modified
from [16]

• SHELL(500) - a program that performs a
shell sort of 500 random numbers, modified
from [16]

• PIKSRT(200) - a program that performs an
insertion (pick) sort of 200 random numbers,
modified from [16]

• FIB(20) - recursive computation of Fi-
bonacci’s number of 20

Four branch prediction schemes were compared:

• 2Bit: Predict branch using a table of 2-bit
counters

• Hist: Local history indexing into local pattern
table of 2-bit counters

• PPM: PPM using local history and local pat-
tern table

• BOM: Prediction using Branch Order Match-
ing (BOM)

Each scheme was equated for total memory used.
Seven memory configurations were tested, corre-
sponding to PPM with a history of 1, 2, 3, 4, 5,
6, or 7 history bits, maintained for 50 branches.
Results are plotted in 1.

Each graph contains 4 curves, one for each pre-
diction scheme. Prediction error percentage is plot-
ted as a function of memory size. In current pro-
cessors, branch predictors have access to memory
comparable to a memory size of 512 bits to 4096
bits. However, future processor technology may be
able to dedicate larger resources to branch predic-
tion, potentially making the data larger memory
profiles more relevant.

For he first five programs, the current technique
BOM, performs the best or among the best. The
last program, FIB(20), illustrates one of the fail-
ures of this prediction method. Because the recur-
sive computation of Fibonacci numbers uses only
one conditional branch, the branch address history
used by BOM is not able to capture any structure.
This suggests that perhaps a predictor which com-
bines branch outcome with branch address might
be better.

While this data is encouraging it is too limited
to make any substantial claims. To get a more ac-
curate measure of its performance tests of larger
systems, including large commercial software pack-
ages, will be needed. In recent papers (e.g. [11, 1])
proposed branch prediction schemes are measured
against enormous programs with millions of in-
structions. While such a study does not produce
any theoretically justifiable measure of a scheme’s
proficiency, it does yield significant empirical evi-
dence on exactly the types of programs which are
expected to be encountered. Without a good model
for the probabilistic distribution over the types of
programmatic constructions a processor is likely to
encounter, testing on likely samples drawn from the
true distribution is the best that can be done.



2000 4000 6000 8000 10000 12000
0

0.05

0.1

0.15

0.2

0.25

Memory Size (bits)

M
is

pr
ed

ic
tio

n 
(%

)

SEIVE(150)

2000 4000 6000 8000 10000 12000
0

0.05

0.1

0.15

0.2

0.25

Memory Size (bits)

M
is

pr
ed

ic
tio

n 
(%

)

TOGGLE(30)

2000 4000 6000 8000 10000 12000
0

0.05

0.1

0.15

0.2

0.25

Memory Size (bits)

M
is

pr
ed

ic
tio

n 
(%

)

HPSORT(500)

2000 4000 6000 8000 10000 12000
0

0.05

0.1

0.15

0.2

0.25

Memory Size (bits)

M
is

pr
ed

ic
tio

n 
(%

)

SHELL(500)

2000 4000 6000 8000 10000 12000
0

0.05

0.1

0.15

0.2

0.25

Memory Size (bits)

M
is

pr
ed

ic
tio

n 
(%

)

PIKSRT(200)

2000 4000 6000 8000 10000 12000
0

0.05

0.1

0.15

0.2

0.25

Memory Size (bits)

M
is

pr
ed

ic
tio

n 
(%

)

FIB(20)

2BIT
HIST
PPM
BOM

Figure 1: Branch misprediction percentages for 4 techniques, applied to six programs.



7.3 Feasibility

The branch order matching method seems to out-
perform other methods when equated for mem-
ory size; however, the computational complexity of
the string matching operation could be prohibitive
within the short time (1 cycle) allotted to branch
prediction. The computational complexity of this
approach, when performed in the naive way, is
O(M2) where M is the total number of addresses
stored in the address list. Using the Knith-Morris-
Pratt algorithm developed for the general string
matching problem, it can be done in O(M) [3].
However, the approach presented is inherently com-
pletely parallelizable – each string match can be
tested independently and in parallel; therefore, us-
ing special purpose hardware, this technique could
possibly made to work in O(1), and produce a pre-
diction in a single cycle. Since the entire branch
prediction system is special purpose hardware that
is integrated into the general purpose pipeline, it is
feasible that an approach such as the one presented
here, could be used in practice.

7.4 Other predictors

Using the same general principles, this approach
can modified to use different sorts of predictors.
Instead of using the order of branches visited, there
are many other possible predictors that could yield
better results. Possibilities include: branch target
address or register values, or some combination of
these predictors.

Other approaches, including PPM and CTW re-
strict both the length and alphabet size of their
contexts. The major contribution of this method is
its framework, which can be used with any context
without length or alphabet size restrictions.

8 Conclusions

We have reviewed many of the techniques which
have been developed for branch prediction. More
recent approaches, based on ideas borrowed from
data compression yield significant improvements.
Perhaps these approaches will be integrated into
the development of future processors10.

Additionally we have presented a new non-
parametric branch prediction technique. This tech-
nique is similar to the string matching within
the LZ77 data compression algorithm. While the

10However, the newest Intel processor, code named
Merced, does not use branch prediction. It instead uses a
technique called predication [15]

computational complexity of this approach pro-
vides some barrier to its usage within the nar-
row time window afforded during branch predic-
tion, it is inherently parallel and could perhaps
be done efficiently using special circuitry. This
new technique achieves significant performance im-
provements over other approaches for most of the
tested examples; however, additional testing, in-
cluding tests of much larger systems will be re-
quired to get a more accurate measure of its perfor-
mance. More importantly however, this technique
suggests a whole new class of potential prediction
algorithms.

References

[1] I-C. K. Chen, J. T. Coffey, and T. N. Mudge.
Ananysis of branch prediction via data com-
pression. In Proceedings of the 7th Interna-
tional Conference on Architectural Support for
Programming Languages and Operating Sys-
tems, ASPLOS VII, pages 128–137, Cam-
bridge, MA, October 1996.

[2] J. Cleary and I. Witten. Data compression
using adaptive coding and partial string ma-
chines. IEEE Transactions on Communica-
tions, 32(4):396–402, April 1984.

[3] T. H. Cormen, C. R. Leiserson, and R. L.
Rivest. Introduction to Algorithms. The MIT
Press, Cambridge, MA, first edition, 1990.

[4] T.M. Cover and J.A. Thomas. Elements of
Information Theory. John Wiley & Sons, 1991.

[5] R.O. Duda and P.E. Hart. Pattern Classifi-
cation and Scene Analysis. John Wiley and
Sons, 1973.

[6] E. Federovsky, M. Feder, and S. Weiss. Branch
prediction based on universal data compres-
sion algorithms. In Proceedings 25th Annual
Symposium on Computer Architecture, pages
62–72, June 1998.

[7] A Fog. Branch prediction in the pentium fam-
ily. http:// www.x86.org / articles / branch /
BranchPrediction.html.

[8] Y. Freund. Boosting a weak learning algorithm
by majority. Information and Computation,
121(2):256–285, 1995.



[9] Edmondson J. H., P. I. Rubinfeld, and etal. In-
ternal organization of the alpha 21164, a 300-
mhz 64-bit quad-issue cmos risc microproces-
sor. Digital Technical Journal, 7(1):119–135,
1995.

[10] J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach. Mor-
gan Kaufmann Publishers, Inc., second edi-
tion, 1990.

[11] J. Kalamatianos and D. Kaeli. Predicting in-
direct branches via data compression. In Pro-
ceedings of the 31st Annual International Sym-
posium on Microarchitecture, November 1998.

[12] S. McFarling. Combining branch predictors.
Technical Report TN-36, Digital Equipment
Corp., June 1993.

[13] R10000 technical briefing. http://
www.sgi.com / processors / r10k / tech info /
Tech Brief.html.

[14] A. Moffat. Implementing the ppm data
compression scheme. IEEE Transactions on
Communications, 38(11):1917–1921, Novem-
ber 1990.

[15] J. C. Park and M. S. Schlansker. On pred-
icated execution. Technical report, Hewlett
Packard Laboratories, 1991.

[16] W. Press, B. Flannery, S. Teukolsky, and
W. Vetterling. Numerical Recipies In C: The
Art and Science of Computing. Cambridge
University Press, New York, 1988.

[17] R. E. Schapire. The strength of weak learnabil-
ity. Machine Learning, 5(2):197–227, 1990.

[18] C. E. Shannon. A mathematical theory of com-
munication. Bell System Technical Journal,
27:379–423 and 623–656, October 1948.

[19] J. E. Smith. A study of branch predition
strategies. In Proceedings of the 8th Interna-
tional Symposium on Computer Architecture,
pages 135–148, May 1981.

[20] The ultrasparc processor – technology white
paper. http:// sunsite.ics.forth.gr / sunsite /
mirror1 / sun microelectronics / UltraSparc /
ultra arch architecture.html.

[21] F. M. J. Willems, Y. M. Shtarkov, and T. J.
Tjalkens. The context tree weighting method
: basic properties. IEEE Transactions on In-
formation Theory, pages 653–664, May 1995.

[22] T. Y. Yeh and Y. N. Patt. Alternative im-
plementations of two-level adaptive training
branch predition. In Proceedings of the 19th
International Symposium on Computer Archi-
tecture, pages 51–61, November 1991.

[23] J. Ziv and A. Lempel. A universal algorithm
for sequential data compression. IEEE Trans-
actions on Information Theory, IT-23:337–
343, 1977.


