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Abstract
This paper examines the problem of reconstructing a

voxelized representation of 3D space from a series of im-
ages. An iterative algorithm is used to find the scene model
which jointly explains all the observed images by determin-
ing which region of space is responsible for each of the ob-
servations. The current approach formulates the problem
as one of optimization over estimates of these responsibil-
ities. The process converges to a distribution of responsi-
bility which accurately reflects the constraints provided by
the observations, the positions and shape of both solid and
transparent objects, and the uncertainty which remains.
Reconstruction is robust, and gracefully represents regions
of space in which there is little certainty about the ex-
act structure due to limited, non-existent, or contradicting
data. Rendered images of voxel spaces recovered from syn-
thetic and real observation images are shown.

1 Introduction
Given information from very many cameras, one might

hope that a completely veridical representation for the 3D
scene could be computed. Such a representation would
necessarily contain information about the shapes and lo-
cations of all objects, information about the colors and re-
flectance properties of each surface, and finally informa-
tion about all light sources.

In this paper, we seek to compute a simpler model. One
which represents the transparency and color of a voxelized
representation of 3D space. While useful for a number of
tasks, this representation ignores some of the more com-
plex properties of image formation. For example, there is
no attempt to measure or estimate the surface reflectance
at each surface point, nor is there any attempt to estimate
the scene illumination. Nevertheless, such a representation
will contain information about the shapes and locations of

objects. It is also contains information necessary to com-
pute convincing synthetic views.

2 Previous Work
Their are two distinct classes of previous research on

3D volume reconstruction. Algorithms developed within
the vision community typically assume that objects can be
represented as completely opaque, and the effects both of
transparency and aliasing can be ignored. In contrast, al-
gorithms for medical imaging assume that volumes con-
tain only semi-transparent tissue and the effects of occlu-
sion can be ignored. In each case, these assumptions can
be exploited in the design of special purpose volume re-
construction algorithms. However, even within these their
respective domains, these approximations are inaccurate.
In natural imagery environments commonly contain trans-
parent objects and because of data limitations, their exact
locations can be uncertain; in medical imagery, bone and
other solid tissue can cause occlusions.

The estimation of structure from natural imagery is a
very diverse field which includes stereo, multi-baseline
stereo, and more general multiple camera approaches.1 We
will limit this review to closely related approaches. The
earliest work which shares the probabilistic flavor of the
Poxels technique is the cooperative stereo algorithms pro-
posed by Marr and Poggio [4]. The Marr-Poggio approach
was distinct in that it simultaneously represented and ma-
nipulated evidence for multiple disparities. This allowed
for the initial consideration of several hypotheses which
would eventually be pruned through subsequent competi-
tion. In much the same spirit, recent work on stereo by
Szeliski and Golland incorporates evidence for competing
correspondencesand the representation of partially trans-
parent regions [7].

1Several reviews of stereo algorithms are available [1, 2].



A radically different approach for 3D reconstruction can
be found in the computed tomography literature2. Solu-
tions in this field typically ignore occlusion, as most ma-
terials are only partially opaque. The simplification allows
reconstruction to be performed with efficient linear meth-
ods [6, 3, 8] However, in the presence of opaque materi-
als, this simplifying assumption leads to “ghosts” or “shad-
ows” – false signals caused by the structures whose contri-
butions should be occluded.

Recently, Seitz and Dyer have proposed an algorithm
which computes a set of occupied voxels that is consis-
tent with a large number of observed images [5]. Unlike
Marr-Poggio, evidence for multiple correspondences is not
explicitly represented, nor do multiple potential correspon-
dences compete. Their approach, however, is distinguished
by its efficiency and its explicit representation of occlusion.

The Seitz and Dyer algorithm makes a single pass
through voxel space, first computing the visibility of each
voxel and then its color. Their algorithm is based on a sim-
ple yet critical insight: each camera must agree on the color
of an opaque voxel, but only when that voxel isvisible from
that camera. This approach yields fairly accurate 3D re-
constructions, and the images rendered by this algorithm
are quite impressive.

Our probabilistic voxel approach will address two lim-
itations of the Seitz and Dyer approach: i) the assumption
that a pixel is either completely transparent or completely
opaque; and ii) the definitive nature of the decision regard-
ing this opacity which does not take into consideration al-
ternative hypotheses which could better explainall the data
simultaneously.

The notion of partial opacity has been recently investi-
gated by Szeliski and Golland. They note that even in the
ideal case, where all the objects in the scene are completely
opaque, a perfect voxelized representation requires trans-
parency along the boundaries of objects where the vox-
els are only partially filled. In their approach to volume
reconstruction Szeliski and Golland use real valued trans-
parencies to represent voxels which are partially occupied
by opaque objects. An accurate model of partially occu-
pied voxels is potentially useful for a wide range of scene
properties including very fine structures, such as the hair or
mesh, and for the representation of semi-transparent mate-
rials such as colored glass, or (in medical imaging) human
tissue. Like Szeliski and Golland, our approach explicitly
represents voxels with partial opacity.

The irrevocable nature of the opacity decisions of the
Seitz and Dyer technique can make volume recovery diffi-
cult. If a voxel is incorrectly labeled opaque, it can go on to
corrupt subsequent processing. Incorrect labeling can oc-
cur for several reasons: errors in calibration, image noise,

2This connection was pointed out to us byname withheld

and false correspondences. A more robust approach would
incorporate information from many images to extract an
accurate representation of the positional uncertainty within
the volume.

Here we present a framework for volume reconstruc-
tion in which solid and transparent objects can be accu-
rately represented. Furthermore, because the current ap-
proach formulates the problem as one of optimization over
the probability distribution of the visibility of each region
of space, uncertainty – due to lack of data, or perhaps con-
tradictory data – can be captured as well.

3 A Unified Framework for 3D Voxel Models
To visualize a voxel space, one traces along a ray cast

from each pixel to determine the sequence of voxels which
are visible. The observed pixel intensity is a weighted com-
bination of the colors along the ray and the weights are a
function of the voxel transparencies.

The voxel space,v(x, y, z), consists of a three dimen-
sional array of colorsc(x, y, z) and opacitiesα(x, y, z).
Observed in isolation, the observed color is a combination
of the voxel’s color and the color which lies behind:

cobs = v ∧ cb = α ∗ c + (1 − α) ∗ cb (1)

An opaque voxel allows none ofcb to pass; a transparent
voxel is entirely invisible. An arbitrary image of this vol-
ume can be computed:

Isk(u, v) = v(lk(u, v, 0)) ∧ v(lk(u, v, 1) ∧ ...
... ∧ v(lk(u, v, n)) ∧ cbg (2)

whereIs denotes a synthesized image,cbg the background
color, andlk(u, v, i) is a ray casting operation which com-
putes a sequence of voxels which intersect a ray cast from
pixel u, v in imagek at depthi. 3 The values taken on
by l(·) are not necessarily integral, in this case bi-linear
interpolation is used to determine values ofc(·) andα(·).
3.1 Direct Reconstruction Algorithms

Given the straightforward relationship between image
obervations and voxel values one could directly search for
v(·) such that

Cost(v) =
∑
j

(Ij − Isj )2

is minimized. While it may be theoretically possible to
directly minimize this function,we do not attempt such a
solution for two reasons: the predicted images are highly
non-linear functions of thec andα, and there are a very
large number of parameters. Instead the Poxel algorithm
minimizes this function using an alternate decomposition.

3The compositing operator,∧, associates right to left.
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Though this fact is somewhat hidden in the above nota-
tion, the observed pixel intensity is a weighted sum of the
colors along the cast ray:

Ik(u, v) =
∑
i

rk(lk(u, v, i))c(lk(u, v, i))

where Ik is the kth image, and the weight
rk(lk(u, v, i)) = α(lk(u, v, i)) ∗

∏
j<i(1− α(lk(u, v, j)))

and rk(lk(u, v, 0)) = α(lk(u, v, 0)). We will call these
weights theresponsibilityof a voxel for the observation at
a pixel. In order to simplify the notation in the remainder
of this section the image pixels can be collected into a
column vector, the colors into another column vector, and
the responsibilities into a matrix with one row for each
pixel and one column for each voxel:

Ik = Rk ∗C.

If the images are stacked into a single vector and the re-
sponsibilities stacked into a single matrix, the entire multi-
camera reconstruction problem may expressed as:

I = R ∗ C.

While the representation ofI and C are reasonably
straightforward, the size ofR could present problems. Re-
call however, thatR is incredibly sparse – the only non-
zero responsibilities are those along rays cast from the pix-
els. Nevertheless, any direct approach for determiningR
andC is potentially very difficult.

3.2 Efficient Solutions for Direct Inversion
Although they do not formulate their work in this way,

the Seitz and Dyer approach can be placed into the direct
reconstruction framework. Their algorithm generates a bi-
nary responsibility matrix such that each row ofR contains
only a single non-zero entry, because in their model the in-
tensity of each pixel is attributable to only a single voxel.
This matrix can be inverted trivially in order to find the
voxel colors: the color for a voxel is the average of the col-
ors observed in the pixels for which it is responsible. The
opacity of each voxel is one if it is responsible for some
pixel4 and zero otherwise.

Computed tomography (CT) can also be easily be ex-
pressed in this color/responsibility framework. The close
relationship between 3D voxel reconstruction and com-
puted tomography has been pointed out before[9]. In CT
the responsibilities are fixed and have a simple form: the
value of each pixel is the sum of color values along a cast
ray. One approach for computing the voxel intensities is
to useback-projection: Ĉ = RT I [3, 8]. This amounts to

4Actually, the Seitz and Dyer algorithm requires that each opaque
voxel explain pixels in several images

projecting the values of each pixel back out into the vol-
ume. While this is not quite correct, sinceRT 6= R−1, the
algorithm is quite simple and the results are reasonable.
A better approach, which produces images with sharper
boundaries, computeŝC = (RTR)−1RT I and is known
asfiltered back-projection. Because of the size ofR com-
puting(RTR)−1 could potentially be very difficult. How-
ever, in the special case of CT scans acquired using regular
geometry(RTR)−1 can be expressed as a convolution. As
a result, filtered backprojection is quite efficient. Wells has
directly applied filtered back-projection to 3D voxel recon-
struction with some success [9]. The most salient draw-
back is that occluding properties of surfaces are never ac-
counted for, and some of the “shadow” effects of standard
CT reonstruction are still observed.

As we have seen, these two approaches solve an appar-
ently intractible problem quite efficiently by making use of
simplifying assumptions.

4 The Poxel Algorithm

The Probabilistic Voxel (Poxel) reconstruction algo-
rithm is a multi-step procedure which alternates between
estimation of the colors, estimation of responsibilities, and
estimation of opacities. Given a set of images,I, and voxel
responsibilitiesR, the voxel colors,C may be computed by
inverting the linear system (as in filtered backprojection).
There is of course, a symmetric relation in which the colors
and images can be used to compute responsibilities. These
two steps can be combined into a multi-step reconstruction
algorithm which gradually improves initial estimates forR
andC. If implemented naively each of the steps in this
process is prohibitively expensive. Simply inverting the
linear system would require work which is proportional to
the cube of the number of voxels. The Poxel reconstruction
algorithm attempts to solve the transparent voxel coloring
problem while preserving some of the efficiencies of the
Seitz and Dyer algorithm and of filtered backprojection.

The Poxel algorithm is initialized with the simple linear
responsibility matrix used in computed tomography. This
corresponds to the notion that initially each voxel along a
cast ray is equally responsible for that pixel.

In the first step of the algorithm agreement between
multiple observations is used to gain an initial estimate of
opacity; a voxel is likely to be responsible for an observa-
tion, and therefore opaque, if it could be responsible for
multiple observations.

Step 1: Color Estimation

The color estimate for each voxel is the average over
the pixels that can potentially observe it, weighted by the
responsibility of that voxel for the color observed at each
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pixel:

C(lk(u, v, i)) =
∑
k rk(lk(u, v, i))Ik(u, v)∑

k rk(lk(u, v, i))

Note that this is a generalization of back projection. Since
it is an estimate for the inverse of the linear system, it is
most accurate when the responsibility matrix is sparse.

Step 2: Computation of Agreements
The view specific disagreement at a voxel is the squared

difference between the average estimate its color and the
estimate based on just a single viewk:

dk(lk(u, v, i)) =
(
Ik(u, v)− C(lk(u, v, i))

)2
The view specific agreement at each voxel is:

ak(x, y, z) = e−
1
σ2 dk(x,y,z)

whereσ is a free parameter expressing the belief about the
noise and calibration errors in the observations.

Though a necesary condition for opacity, agreement
does not neccesarly imply opacity: agreement may be due
to false correspondences between the observed images.

Step 3: Computation of Responsibilities
The next step in the Poxel algorithm is reminiscient of

the Marr-Poggio competition among disparities: the agree-
ments are normalized along observation rays so that they
sum to one. This forces the voxels on the ray to jointly
explain 100% of the observation. Voxels with large agree-
ment dominate the sum and “win out” in the final competi-
tion for responsibility. Responsibility is an inherently view
dependent quantity.

Agreement is normalized to form a set of responsibili-
ties along each ray:

rk(u, v, i) =
a(lk(u, v, i))∑
j a(lk(u, v, j))

To understand the effect of these steps, consider the case
where one voxel along the ray,v(lk(u, v, i)), has near per-
fect agreement, while the other voxels along the ray do not
agree well. In this case the responsibility forIk(u, v) will
fall almost entirely onv(lk(u, v, i)) (equivaliently only one
of the entries in that row ofR will be non-zero).

Step 4: Computation of Opacities
At this point the Poxel algorithm computes a set of view

independent opacities which are consistent with the view
dependent responsibilities. Though the relationship be-
tween observed intensity and opacity is highly non-linear,
there is a direct method for computing a set of opacities
from a set of responsibilities:

αk(l(u, v, i)) =
rk(lk(u, v, i))

1−
∑
j<i rk(lk(u, v, j))

.

A globally consistent set of opacities is computed by the
weighted average of the individual view estimates:

α(x, y, z) =
∑
k rk(x, y, z)αk(x, y, z)∑

j rj(x, y, z)
.

Step 5: Re-estimation of responsibilities
The final step in the procedure computes a new set of

responsibilites for each voxel using the aggregated opaci-
ties:

r′k(lk(u, v, i)) = α(lk(u, v, i))

∏
j<i

α(lk(u, v, j))


These responsibilities are then used in subsequent itera-
tions of the process.

The entire Poxel procedure is repeated until the global
opactiy estimate converges. At which point the global
color C and transparencyα are extracted and combined
to form the final semi-transparent voxelated space.

The Poxel algorithm progresses from an initial estimate
of the volume as entirely trasparent, toward a state in which
much of the volume is empty, and the observations are
explained by a collection of semitransparent and opaque
structures.

In the initial phases of reconstruction, occlusions cannot
be accurately determined and each image can potentially
contain an observation of each voxel. However, because
of occlusion, it is typically the case that only a few images
actually observe a given voxel. As a result of this, intial
estimates of voxel color agreement are inaccurate because
they rely on some observations which are, in reality, oc-
cluded. Nevertheless, some voxels are sufficiently visible
so that initial agreement estimates are reasonably accurate.
Based on this information, the opacity of some voxels will
be realized. The occlusions caused by these voxels are
then incorporated into future color agreement estimates.
As the algorithm progresses, images which do not observe
a voxel because of occlusion are gradually phased out of
color agreement estimates. In the final iterations accurate
information about occlusion is available and the calcula-
tion of colors is quite accurate since information from oc-
cluded viewpoints is disregarded completely.

One important aspect of the Poxel algorithm is that it
equates transparency with uncertainty. This equivalence
is justifiable: a voxel which contains completely opaque
material with less than complete certainty is equivalent to
a voxel which contains semitransparent material in that the
expected observation of each is identical.

Suppose reconstruction is performed from a set of ob-
served images which are completely white. From this in-
formation, we can be certain that there is something white
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in the scene, however, we can not be certain of its location
or shape. In fact, there are a very large number of shapes
which are consistent with this data. Using a-priori infor-
mation we might attempt to pick the most likely shape,
but this would only reflect the form of the prior. Alterna-
tively we could choose to represent the entire distribution
of shapes explicitly, as a probability distribution. With a
sufficiently agnostic prior, the posteori probability of each
voxel being filled would be close to uniform. Subsequent
processing can then be performed using the entire distribu-
tion. For example, one could render the expected image of
this distribution; in which case each voxel is entirely rep-
sonsible for a pixel some percentage of the time. In con-
trast, the Poxel algorithm represents this volume as a semi-
transparent white fog. In this representation each voxel is
responsible for some percentage of the observed intensity.
In both interpretations the expected observations are indis-
tinguishable.

5 Experiments
Performance of the Poxel algorithm was examined on

a variety of real and synthetic data. While the algorithm
is quite general regarding the positions of cameras, in our
experiments we positioned the cameras around a circle,
pointed toward the center of the circle. The experiments
used 36 camera positions.

In the first experiment a set of synthetic images were
generated using a POV-Ray, a public domain graphics
package. Thirty six 128x128 images were generated of a
scene containing two chess pieces, a red rook and a white
knight. The free parameter,σ, was set to 3% of the max-
imum color difference. This value forσ is realtively low,
encompassing our knowledge that there is little noise or
calibration error in the input images. The resulting volume
contains 128x128x128 element and was computed using
3 passes through the poxel algorithm. Figure 1 contains
three images: an example input image, a horizontal cross-
section ofα, and a view synthesized from the recovered
voxel space5 While in many ways the chess pieces are an
“easy” synthetic dataset, it does serve to illustrate the ac-
curacy of the technique.

The second experiment was also synthetic: a white
ovoid and a transparent yellow box. All parameters were
the same as in the first experiment. Results are displayed
in Figure 2. The system is able to recover the transparency
of the box, and the opacity of the ovoid. However, the
structure is not recovered perfectly. We believe that this is
due to the current scheme for estimating voxel colors (as
a simple weighted average). We are currently working on
improving these color esimates.

In order to facilitate experiments with real data, a scan-

5Synthesized views were also rendered using POV-Ray.

ning device was constructed that automatically captures
images by rotating an inwardly pointing camera around
a stationary observaion platform. The radius of the cir-
cle swept out by the camera is 1.5 feet. Images were ac-
quired with a standard Pulnix color camera equipped with a
35mm lens. For each experiment, a set of 36 images were
acquired from positions distributed uniformly around the
circle.

In the third experiment images of a plastic children’s toy
were acquired. The images are 320x240 and reconstruction
volume is 320x320x240. A larger value of 8% was used
for σ to compensate for noise in the imaging system, and
slight imprecisions in angular position. Four iterations of
the poxel algorithm was used to recover the volume. Fig-
ure 3 contains an input image, cross-section, and a synthe-
sized view.

In the fourth experiment 160x120 images of a plastic
dinosaur were used to reconstruct a 160x160x120 volume.
Once againσ was set to 8%. The results for this scene are
shown in Figure 4.

The fifth experiment was designed to demonstrate the
Poxel algorithm on a real transparent scene. A set of
lego bricks were placed inside of a frosted glass jar. The
images used are 160x120 and reconstruction volume is
160x160x120. Parameters of the poxel algorithm: 5 itera-
tions andσ = 8%. The results for this scene are shown in
Figure 5.

6 Conclusions
The Poxel reconstruction algorithm is able to recon-

struct volumetric representations of 3D space from a col-
lection of observed images. By incorporating information
from throughout the volume in determining opacity, accu-
rate reconstruction of opaque and transparent materials can
be performed. The Poxel algorithm able to reconstruct vol-
umes from both natural imagery, in which most objects are
completely opaque, and medical imagery, which mostly
contain semi-transparent tissue. Reconstruction explicitly
represents the ambiguity in regions of space in which there
is little certainty about the exact structure due to limited,
non-existent, or contradicting data. It is therefore espe-
cially applicable to situations in which not only accuracy,
but also precise knowledge of uncertainty, is important.
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